1 закон сохранения механической энергии. Закон изменения и сохранения полной механической энергии

Закон сохранения механической энергии.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

Или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Статика. Равнодействующая сила. Момент силы. Условия равновесия материальной точки и твердого тела.Границы применимости классической механики.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называютполной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса). Рис. 1.1.16 поясняет решение этой задачи.

Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде:

Из этих соотношений следует:

Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно

Прочность нити должна, очевидно, превышать это значение.

Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии (рис. 1.1.17).

История хранит немалое число проектов «вечного двигателя». В некоторых из них ошибки «изобретателя» очевидны, в других эти ошибки замаскированы сложной конструкцией прибора, и бывает очень непросто понять, почему эта машина не будет работать. Бесплодные попытки создания «вечного двигателя» продолжаются и в наше время. Все эти попытки обречены на неудачу, так как закон сохранения и превращения энергии «запрещает» получение работы без затраты энергии.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ :

Внимательно рассмотрите окно опыта. Найдите все регуляторы и другие основные элементы. Зарисуйте в свой конспект схему опыта.

После нажатия мышью кнопки «Выбор» установите с помощью движков регуляторов значения массы тела m , угла наклона плоскости, внешней силыF вн , коэффициента тренияи ускоренияа , указанных в табл.1 для вашей бригады.

Потренируйтесь в синхронном включении секундомера и снятия метки «тело закреплено» одиночным щелчком курсора мыши на кнопке в правом нижнем углу окна опыта

Одновременно включите секундомер и снимите метку «тело закреплено». Выключите секундомер в момент остановки тела в конце наклонной плоскости.

Проделайте этот опыт 10 раз и результаты измерения времени соскальзывания тела с наклонной плоскости запишите в табл. 2.

ТАБЛИЦА 1. Исходные параметры опыта

бриг.

m , кг

,град

F вн, Н

а,м/с 2

ТАБЛИЦА 2. Результаты измерений и расчётов

изм.

Сред.

знач.

t , с

v , м/с

S, м

W к , Дж

W п , Дж

A тр, Дж

A вн , Дж

W полн , Дж

ОБРАБОТКА РЕЗУЛЬТАТОВ И ОФОРМЛЕНИЕ ОТЧЁТА:

Вычислите по формулам:

а) - скорость тела в конце наклонной плоскости;

б)
- длину наклонной плоскости;

в)
- кинетическую энергию тела, в конце наклонной плоскости;

г)

- потенциальную энергию тела в верхней точке наклонной плоскости;

д) - работу силы трения на участке спуска;

е)
- работу внешней силы на участке спуска(определите знак работы исходя из условий эксперимента)

и запишите эти значения в соответствующие строки табл. 2.

Вычислите средние значения этих параметров и запишите их в столбец «средние значения» табл.2.

По формуле Е мех1 = Е мех2 проверьте выполнение закона сохранения механической энергии при движении тела по наклонной плоскости, рассчитайте погрешности и сделайте выводы по результатам проведённых опытов.

Вопросы и задания для самоконтроля

    В чём заключается закон сохранения механической энергии?

    Для каких систем выполняется закон сохранения механической энергии?

    В чём состоит различие между понятиями энергии и работы?

    Чем обусловлено изменение потенциальной энергии?

    Чем обусловлено изменение кинетической энергии?

    Необходимо ли выполнение условия замкнутости механической системы тел для выполнения закона сохранения механической энергии?

    Какие силы называются консервативными?

    Какие силы называются диссипативными?

    Тело медленно втаскивают в гору. Зависят ли от формы профиля горы: а) работа силы тяжести; б) работа силы трения? Начальная и конечная точки перемещения тела фиксированы.

    Тело соскальзывает с вершины наклонной плоскости без начальной скорости. Зависит ли работа силы трения на всём пути движения тела до остановки на горизонтальном участке: а) от угла наклона плоскости; б) от коэффициента трения?

    По наклонной плоскости с одной и той же высоты соскальзывают два тела: одно массой m, другое массой 2m. Какое из тел пройдёт до остановки по горизонтальному участку путь больший и во сколько раз? Коэффициенты трения для обоих тел одинаковы.

    Санки массой mскатились с горы высотой Н и остановились на горизонтальном участке. Какую работу необходимо совершить для того, чтобы поднять их на гору по линии скатывания.

    С одинаковой начальной скоростью тело проходит: а) впадину; б) горку, имеющие одинаковые дуги траекторий и одинаковые коэффициенты трения. Сравните скорости тела в конце пути в обоих случаях.

ЛАБОРАТОРНАЯ РАБОТА № 1_2

Теория: Энергия никуда не исчезает, она из одного вида превращается в другой, и из ниоткуда она не возникает.
Энергия способна переходить в механическую работу или в .
Полная энергия замкнутой системы величина постоянная: E=E к +E п

Например: тело массой 2 кг поднимем на высоту 1 метр, на этой высоте потенциальная тела E п =mgh=20 Дж, по мере падения тела, высота уменьшается, потенциальная энергия так же уменьшается. При этом скорость тела начинает увеличиваться, в следствии чего и кинетическая энергия увеличивается. Получается, что энергия из потенциальной переходит в кинетическую. В момент касания поверхности, потенциальная энергия равна нулю, кинетическая максимальна и равна так же как в начале 20 Дж. Если тело упруго отразится, то по мере поднятия на высоту, кинетичесская энергия будет уменьшаться, и переходить в потенциальную.

Задания:  Мяч бросают вертикально вверх с поверхности Земли. Сопротивление воздуха пренебрежимо мало. При увеличении начальной скорости мяча в 2 раза высота подъёма мяча
  1) увеличится в √ 2 раза
 2) увеличится в 2 раза
  3) увеличится в 4 раза
 4) не изменится

Задание: Пуля, движущаяся со скоростью 600 м/с, пробила доску толщиной 1,5 см и на выходе из доски имела скорость 300 м/с. Определите массу пули, если средняя сила сопротивления, воздействующая на пулю в доске, равна 81 кН.

Тело массой m, брошенное с Земли вертикально вверх с начальной скоростью υ 0 , поднялось на высоту h 0 . Сопротивление воздуха пренебрежимо мало. Полная механическая энергия тела на некоторой промежуточной высоте h равна

Решение: Поскольку сопротивление воздуха пренебрежимо мало, следовательно полная энергия системы не изменяется. Полная механическая энергия тела на некоторой промежуточной высоте h равна энергии на максимальной высоте mgh 0 .
Ответ: 2
Задание ОГЭ по физике (фипи): Шарик движется вниз по наклонному желобу без трения. Какое из следующих утверждений об энергии шарика верно при таком движении?
1) Кинетическая энергия шарика увеличивается, его полная механическая энергия не изменяется.
2) Потенциальная энергия шарика увеличивается, его полная механическая энергия не изменяется.
3) И кинетическая энергия, и полная механическая энергия шарика увеличиваются.
4) И потенциальная энергия, и полная механическая энергия шарика уменьшаются.
Решение: При движении вниз, скорость шарика увеличивается. Следовательно кинетическая энергия увеличивается. Так как трения нет, и систему можно считать замкнутой, то полная механическая энергия не изменяется.
Ответ: 1
Задание ОГЭ по физике (фипи): Товарный вагон, движущийся по горизонтальному пути с небольшой скоростью, сталкивается с другим вагоном и останавливается. При этом пружина буфера сжимается. Какое из перечисленных ниже преобразований энергии происходит в этом процессе?
1) кинетическая энергия вагона преобразуется в потенциальную энергию пружины
2) кинетическая энергия вагона преобразуется в его потенциальную энергию
3) потенциальная энергия пружины преобразуется в её кинетическую энергию
4) внутренняя энергия пружины преобразуется в кинетическую энергию вагона
Решение: Сначала вагон двигался, значит у него была кинетическая энергия. При сталкновении пружина сжалась, т.е. кинетическая энергия вагона преобразуется в потенциальную энергию пружины

Суммарная механическая энергия системы () — это энергия механического энергия и взаимодействия:

где — кинетическая энергия тела; — потенциальная энергия тела.

Закон сохранения энергии создан в результате обобщения эмпирических данных. Идея такого закона принадлежала М.В. Ломоносову, который представил закон сохранения материи и движения. Количественно закон сформулировали немецкий врач Ю. Майер и ученый — естествоиспытатель. Гельмгольц.

Формулировка закона сохранения механической энергии

Если в системе тел действуют исключительно силы, которые являются консервативными, то суммарная механическая энергия остается неизменной во времени. (Консервативными (потенциальными) называют силы, работа которых не зависит: от вида траектории, точки к которой приложены данные силы, закона, который описывает движение этого тела, и определено исключительно начальной и конечной точками траектории движения тела (материальной точки)).

Механические системы, в которых действуют исключительно консервативные силы, называют консервативными системами.

Еще одной формулировкой закона сохранения механической энергии считают следующую:

Для консервативных систем суммарная механическая энергия системы величина неизменная.

Математическая формулировка закона сохранения механической энергии имеет вид:

Значение закона сохранения механической энергии

Данный закон связан со свойством однородности времени. Что означает инвариантность законов физики относительно выбора начала временного отсчета.

В диссипативных системах механическая энергия уменьшается, так как происходит преобразование механической энергии в немеханические ее виды. Такой процесс называют рассеянием (диссипацией) энергии.

В консервативных системах полная механическая энергия постоянна. Происходят переходы кинетической энергии в потенциальную и наоборот. Следовательно, закон сохранения механической энергии отражает не только сохранение энергии количественно, но указывает на качественную сторону взаимного превращения разных форм движения друг в друга.

Закон сохранения и превращения энергии является фундаментальным законом природы. Он выполняется и в макро и микро мире.

Примеры решения задач

ПРИМЕР 1

Задание Тело массы упало с высоты на площадку, прикрепленную к пружине с коэффициентом упругости (рис.1). Каково смещение пружины ()?


Решение За ноль потенциальной энергии примем положение площадки до падения на нее груза. Потенциальная энергия тела, поднятого на высоту ,переходит в потенциальную энергию сжатой пружины. Запишем закон сохранения энергии системы тело — пружина:

Получили квадратное уравнение:

Решая квадратное уравнение получим:

Ответ

ПРИМЕР 2

Задание Объясните, почему говорят о всеобщем характере закона сохранения энергии, но известно, что при наличии неконсервативных сил в системе механическая энергия убывает.
Решение Если сил трения в системе нет, то закон сохранения механической энергии выполняется, то есть полная механическая энергия не изменяется во времени. При действии сил трения, механическая энергия убывает, но при этом увеличивается внутренняя энергия. С развитием физики как науки были обнаружены новые виды энергии (световая энергия, электромагнитная энергия, химическая энергия, ядерная энергия). Было выяснено, что если над телом совершается работа, то она равна приращению суммы всех видов энергии тела. Если тело само совершает работу, над другими телами, то эта работа равна убыли суммарной энергии этого тела. Все виды энергии переходят из одного вида в другой. Причем, при всех переходах суммарная энергия остается неизменной. В этом и состоит всеобщность закона сохранения энергии.

В начале этой главы мы говори­ли, что энергия, как и импульс, сохраняется. Однако когда мы рас­сматривали кинетическую и потен­циальную энергии, об их сохранении ничего не говорилось. В чем же состоит закон сохранения энергии?

Рассмотрим, как изменяется энер­гия тел, взаимодействующих только друг с другом. Такие системы, как мы знаем, называются замкнутыми. Такая система может обладать и кинетической и потенциальной энер­гией. Кинетической - потому, что тела системы могут двигаться, по­тенциальной - потому, что тела сис­темы взаимодействуют друг с другом. И та и другая энергия системы может изменяться с течением вре­мени.

Обозначим через E р1 потенциаль­ную энергию системы в какой-то момент времени, а через E k 1 общую кинетическую энергию системы тел в тот же момент времени. Потен­циальную и кинетическую энергии этих же тел в какой-нибудь другой момент времени обозначим соответ­ственно через Е Р2 и E k 2

В предыдущих параграфах мы установили, что, когда тела взаимо­действуют друг с другом силами тяжести или упругости, совершенная этими силами работа равна взятому с противоположным знаком изме­нению потенциальной энергии тел системы:


С другой стороны, согласно тео­реме о кинетической энергии, эта же работа равна изменению кинети­ческой энергии:

A = E k2 – E k1 (2)

Энергия превращается из одного вида в другой.

В левых частях равенств (1) и (2) стоит одна и та же величина - работа сил взаимо­действия тел системы. Значит, и правые части равны друг другу:

E k2 - E k 1 = - (Ep 2 - Ep 1). (3)

Из этого равенства видно, что кинетическая и потенциальная энер­гия в результате взаимодействия и движения тел изменяется так, что увеличение одной из них равно уменьшению другой. На сколько одна из них возрастает, на столько другая уменьшается. Дело выглядит так, как будто бы происходит превращение одного вида энергии в другой. В этом состоит важная особенность величины, называемой энергией: есть различные формы энергии, и они могут превращаться одна в другую. Но ни об одной из них нельзя сказать, что она сохраняется.

Полная механическая энергия. Закон сохранения полной механи­ческой энергии.

Если из двух видов энергии один уменьшается ровно на столько, на сколько увеличивается другой, то это значит, что сумма энергий обоих видов остается неиз­менной. Это видно из формулы (3), которую можно переписать так:

E k 2 + Ep 2 = E k 1 + Ep 1 . (4)

В левой части равенства мы видим сумму кинетической и потен­циальной энергий системы тел в ка­кой-то момент времени, в правой - ту же сумму в другой момент времени. Эта сумма называется полной механической энергией систе­мы. Для системы тел, в которой действует сила тяжести, например для системы «Земля - падающее тело» или «Земля - тело, брошенное вверх», она равна mgh+mv 2 /2 .



Если между телами системы действует сила упругости, то полная механи­ческая энергия запишется так:

kx 2 /2 + mv 2 /2

Равенство (4) означает, что пол­ная механическая энергия замкнутой системы тел остается неизменной, сохраняется. В этом состоит закон сохранения энергии.

Полная механическая энергия замкнутой системы тел, взаимодей­ствующих силами тяготения или си­лами упругости, остается неизменной при любых движениях тел системы.

Превращения энергии и работа.

Тот факт, что одна и та же работа приводит к увеличению кинетической или к такому же уменьшению по­тенциальной энергии, означает, что работа равна энергии, превратив­шейся из одного вида в другой. Мы видели, например, что поло­жительная работа силы равна умень­шению потенциальной энергии. Но, согласно закону сохранения полной энергии, потенциальная энергия не может уменьшаться, не превратив­шись в энергию кинетическую!

Закон сохранения энергии, как и закон сохранения импульса, можно использовать для решения многих механических задач. Этим способом многие задачи решаются более прос­то, чем при прямом применении законов движения.

1. Что такое полная механическая энер­гия?

2. В чем состоит закон сохранения ме­ханической энергии?

3. Выполняется ли закон сохранения ме­ханической энергии, если действуют одно­временно и сила тяжести и упругая сила?

4. Как влияет на энергию системы тел действие внешней силы? Сохраняется ли в этом случае полная механическая энергия? 5. Спутник вращается по орбите вокруг Земли. С помощью ракетного двигателя его перевели на другую орбиту. Измени­лась ли его механическая энергия?