Энергетическая и сырьевая проблема

Министерство сельского хозяйства и продовольствия Российской Федерации

ФГОУ ВПО Уральская государственная сельскохозяйственная академия

Кафедра экологии и зоогигиены

Реферат по экологии:

Энергетические проблемы человечества

Исполнитель: ANTONiO

студент ФТЖ 212Т

Руководитель: Лопаева

Надежда Леонидовна

Екатеринбург 2007


Введение. 3

Энергетика: прогноз с позиции устойчивого развития человечества. 5

Нетрадиционные источники энергии. 11

Энергия Солнца. 12

Ветровая энергия. 15

Термальная энергия земли. 18

Энергия внутренних вод. 19

Энергия биомассы.. 20

Заключение. 21

Литература. 23


Введение

Сейчас, как никогда остро встал вопрос, о том, каким будет будущее планеты в энергетическом плане. Что ждет человечество - энергетический голод или энергетическое изобилие? В газетах и различных журналах все чаще и чаще встречаются статьи об энергетическом кризисе. Из-за нефти возникают войны, расцветают и беднеют государства, сменяются правительства. К разряду газетных сенсаций стали относить сообщения о запуске новых установок или о новых изобретениях в области энергетики. Разрабатываются гигантские энергетические программы, осуществление которых потребует громадных усилий и огромных материальных затрат.

Если в конце XIX века энергия играла, в общем, вспомогательную и незначительную в мировом балансе роль, то уже в 1930 году в мире было произведено около 300 миллиардов киловатт-часов электроэнергии. С течением времени - гигантские цифры, огромные темпы роста! И все равно энергии будет мало - потребности в ней растут еще быстрее. Уровень материальной, а, в конечном счёте, и духовной культуры людей находится в прямой зависимости от количества энергии, имеющейся в их распоряжении.

Чтобы добыть руду, выплавить из нее металл, построить дом, сделать любую вещь, нужно израсходовать энергию. А потребности человека все время растут, да и людей становится все больше. Так за чем же остановка? Ученые и изобретатели уже давно разработали многочисленные способы производства энергии, в первую очередь электрической. Давайте тогда строить все больше и больше электростанций, и энергии будет столько, сколько понадобится! Такое, казалось бы, очевидное решение сложной задачи, оказывается, таит в себе немало подводных камней. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразований из других форм.

Вечные двигатели, якобы производящие энергию и ниоткуда ее не берущие, к сожалению, невозможны. А структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, то есть при сжигании топлива, или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Правда, способы сжигания топлива стали намного сложнее и совершеннее. Возросшие требования к защите окружающей среды потребовали нового подхода к энергетике. В разработке Энергетической программы приняли участие виднейшие ученые и специалисты различных сфер. С помощью новейших математических моделей электронно-вычислительные машины рассчитали несколько сотен вариантов структуры будущего энергетического баланса. Были найдены принципиальные решения, определившие стратегию развития энергетики на грядущие десятилетия. Хотя в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах, структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях.

Энергетика: прогноз с позиции устойчивого развития человечества

Согласно каким законам будет развиваться энергетика мира в будущем, исходя из ООНовской Концепции устойчивого развития человечества? Результаты исследований иркутских ученых, сопоставление их с работами других авторов позволили установить ряд общих закономерностей и особенностей.

Концепция устойчивого развития человечества, сформулированная на Конференции ООН 1992 г. в Рио-де-Жанейро, несомненно, затрагивает и энергетику. На Конференции показано, что человечество не может продолжать развиваться традиционным путем, который характеризуется нерациональным использованием природных ресурсов и прогрессирующим негативным воздействием на окружающую среду. Если развивающиеся страны пойдут тем же путем, каким развитые страны достигли своего благополучия, то глобальная экологическая катастрофа будет неизбежна.

В основе концепции устойчивого развития лежит объективная необходимость (а также право и неизбежность) социально-экономического развития стран третьего мира. Развитые страны могли бы, по-видимому, "смириться" (по крайней мере, на какое-то время) с достигнутым уровнем благосостояния и потребления ресурсов планеты. Однако речь идет не просто о сохранении окружающей среды и условий существования человечества, но и об одновременном повышении социально-экономического уровня развивающихся стран ("Юга") и приближении его к уровню развитых стран ("Севера").

Требования к энергетике устойчивого развития будут, конечно, шире, чем к экологически чистой энергетике. Требования неисчерпаемости используемых энергетических ресурсов и экологической чистоты, заложенные в концепции экологически чистой энергетической системы, удовлетворяют двум важнейшим принципам устойчивого развития - соблюдение интересов будущих поколений и сохранение окружающей среды. Анализируя остальные принципы и особенности концепции устойчивого развития, можно заключить, что к энергетике в данном случае следует предъявить, как минимум, два дополнительных требования:

Обеспечение энергопотребления (в том числе, энергетических услуг населению) не ниже определенного социального минимума;

Развитие национальной энергетики (так же, как и экономики) должно быть взаимно скоординировано с развитием ее на региональном и глобальном уровнях.

Первое вытекает из принципов приоритета социальных факторов и обеспечения социальной справедливости: для реализации права людей на здоровую и плодотворную жизнь, уменьшения разрыва в уровне жизни народов мира, искоренения бедности и нищеты, необходимо обеспечить определенный прожиточный минимум, в том числе, удовлетворение минимально необходимых потребностей в энергии населения и экономики.

Второе требование связано с глобальным характером надвигающейся экологической катастрофы и необходимостью скоординированных действий всего мирового сообщества по устранению этой угрозы. Даже страны, имеющие достаточные собственные энергетические ресурсы, как, например, Россия, не могут изолированно планировать развитие своей энергетики из-за необходимости учитывать глобальные и региональные экологические и экономические ограничения.

В 1998--2000 гг. в ИСЭМ СО РАН проведены исследования перспектив развития энергетики мира и его регионов в XXI веке, в которых наряду с обычно ставящимися целями определения долгосрочных тенденций в развитии энергетики, рациональных направлений НТП и т.п. сделана попытка проверки получаемых вариантов развития энергетики "на устойчивость", т.е. на соответствие условиям и требованиям устойчивого развития. При этом в отличие от вариантов развития, разрабатывавшихся ранее по принципу "что будет, если...", авторы попытались предложить по возможности правдоподобный прогноз развития энергетики мира и его регионов в XXI веке. При всей его условности дается более реалистичное представление о будущем энергетики, ее возможном влиянии на окружающую среду, необходимых экономических затратах и др.

Общая схема этих исследований в значительной мере традиционна: использование математических моделей, для которых готовится информация по энергетическим потребностям, ресурсам, технологиям, ограничениям. Для учета неопределенности информации, в первую очередь по потребностям в энергии и ограничениям, формируется набор сценариев будущих условий развития энергетики. Результаты расчетов на моделях затем анализируются с соответствующими выводами и рекомендациями.

Основным инструментом исследований являлась Глобальная энергетическая модель GEM-10R. Эта модель - оптимизационная, линейная, статическая, многорегиональная. Как правило, мир делился на 10 регионов: Северная Америка, Европа, страны бывшего СССР, Латинская Америка, Китай и др. Модель оптимизирует структуру энергетики одновременно всех регионов с учетом экспорта-импорта топлива и энергии по 25-летним интервалам - 2025, 2050, 2075 и 2100 гг. Оптимизируется вся технологическая цепочка, начиная с добычи (или производства) первичных энергоресурсов, кончая технологиями производства четырех видов конечной энергии (электрической, тепловой, механической и химической). В модели представлено несколько сот технологий производства, переработки, транспорта и потребления первичных энергоресурсов и вторичных энергоносителей. Предусмотрены экологические региональные и глобальные ограничения (на выбросы СО 2 , SO 2 и твердых частиц), ограничения на развитие технологий, расчет затрат на развитие и функционирование энергетики регионов, определение двойственных оценок и др. Первичные энергетические ресурсы (в том числе, возобновляемые) в регионах задаются с разделением на 4-9 стоимостных категорий.

Анализ результатов показал, что полученные варианты развития энергетики мира и регионов по-прежнему трудно реализуемы и не вполне отвечают требованиям и условиям устойчивого развития мира в социально-экономических аспектах. В частности, рассматривавшийся уровень энергопотребления представился, с одной стороны, трудно достижимым, а с другой стороны - не обеспечивающим желаемого приближения развивающихся стран к развитым по уровню душевого энергопотребления и экономического развития (удельному ВВП). В связи с этим был выполнен новый прогноз энергопотребления (пониженного) в предположении более высоких темпов снижения энергоемкости ВВП и оказания экономической помощи развитых стран развивающимся.

Высокий уровень энергопотребления определен исходя из удельных ВВП, в основном соответствующих прогнозам Мирового банка. При этом в конце XXI века развивающиеся страны достигнут лишь современного уровня ВВП развитых стран, т.е. отставание составит около 100 лет. В варианте низкого энергопотребления размер помощи развитых стран развивающимся принят исходя из обсуждавшихся в Рио-де-Жанейро показателей: около 0,7 % ВВП развитых стран, или 100-125 млрд дол. в год. Рост ВВП развитых стран при этом несколько уменьшается, а развивающихся - увеличивается. В среднем же по миру душевой ВВП в этом варианте увеличивается, что свидетельствует о целесообразности оказания такой помощи с точки зрения всего человечества.

Душевое потребление энергии в низком варианте в промышленно развитых странах стабилизируется, в развивающихся - возрастет к концу века примерно в 2,5 раза, а в среднем по миру - в 1,5 раза по сравнению с 1990 г. Абсолютное мировое потребление конечной энергии (с учетом роста населения) увеличится к концу начавшегося столетия по высокому прогнозу примерно в 3,5 раза, по низкому - в 2,5 раза.

Использование отдельных видов первичных энергоресурсов характеризуется следующими особенностями. Нефть во всех сценариях расходуется примерно одинаково - в 2050 г. достигается пик ее добычи, а к 2100 г. дешевые ресурсы (первых пяти стоимостных категорий) исчерпываются полностью или почти полностью. Такая устойчивая тенденция объясняется большой эффективностью нефти для производства механической и химической энергии, а также тепла и пиковой электроэнергии. В конце века нефть замещается синтетическим топливом (в первую очередь, из угля).

Добыча природного газа непрерывно увеличивается в течение всего века, достигая максимума в его конце. Две наиболее дорогие категории (нетрадиционный метан и метаногидраты) оказались неконкурентоспособными. Газ используется для производства всех видов конечной энергии, но в наибольшей степени - для производства тепла.

Уголь и ядерная энергия подвержены наибольшим изменениям в зависимости от вводимых ограничений. Будучи примерно равноэкономичными, они замещают друг друга, особенно в "крайних" сценариях. В наибольшей мере они используются на электростанциях. Значительная часть угля во второй половине века перерабатывается в синтетическое моторное топливо, а ядерная энергия в сценариях с жесткими ограничениями на выбросы СО 2 в больших масштабах используется для получения водорода.

Использование возобновляемых источников энергии существенно различается в разных сценариях. Устойчиво используются лишь традиционные гидроэнергия и биомасса, а также дешевые ресурсы ветра. Остальные виды ВИЭ являются наиболее дорогими ресурсами, замыкают энергетический баланс и развиваются по мере необходимости.

Интересно проанализировать затраты на мировую энергетику в разных сценариях. Меньше всего они, естественно, в двух последних сценариях с пониженным энергопотреблением и умеренными ограничениями. К концу века они возрастают примерно в 4 раза по сравнению с 1990 г. Наибольшие затраты получились в сценарии с повышенным энергопотреблением и жесткими ограничениями. В конце века они в 10 раз превышают затраты 1990 г. и в 2,5 раза - затраты в последних сценариях.

Следует отметить, что введение моратория на ядерную энергетику при отсутствии ограничений на выбросы СО 2 увеличивает затраты всего на 2 %, что объясняется примерной равноэкономичностью АЭС и электростанций на угле. Однако, если при моратории на ядерную энергетику ввести жесткие ограничения на выбросы СО 2 , то затраты на энергетику возрастают почти в 2 раза.

Следовательно, "цены" ядерного моратория и ограничений на выбросы СО 2 очень велики. Анализ показал, что затраты на снижение выбросов СО 2 могут составить 1-2 % от мирового ВВП, т.е. они оказываются сопоставимыми с ожидаемым ущербом от изменения климата планеты (при потеплении на несколько градусов). Это дает основания говорить о допустимости (или даже необходимости) смягчения ограничений на выбросы СО 2 . Фактически требуется минимизировать сумму затрат на снижение выбросов СО 2 и ущербов от изменения климата (что, конечно, представляет исключительно сложную задачу).

Очень важно, что дополнительные затраты на уменьшение выбросов СО 2 должны нести, главным образом, развивающиеся страны. Между тем, эти страны, с одной стороны, не виновны в создавшемся с тепличным эффектом положении, а с другой - просто не имеют таких средств. Получение же этих средств от развитых стран, несомненно, вызовет большие трудности и это - одна из серьезнейших проблем достижения устойчивого развития.

В XXI веке мы трезво отдаём себе отчёт в реальностях третьего тысячелетия. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. К сожалению, многие нефтедобывающие страны живут сегодняшним днем. Они нещадно расходуют подаренные им природой нефтяные запасы. Что же произойдет тогда, а это рано или поздно случится, когда месторождения нефти и газа будут исчерпаны? Вероятность скорого истощения мировых запасов топлива, а также ухудшение экологической ситуации в мире, (переработка нефти и довольно частые аварии во время ее транспортировки представляют реальную угрозу для окружающей среды) заставили задуматься о других видах топлива, способных заменить нефть и газ.

Сейчас в мире все больше ученых инженеров занимаются поисками новых, нетрадиционных источников которые могли бы взять на себя хотя бы часть забот по снабжению человечества энергией. Нетрадиционные возобновляемые источники энергии включают солнечную, ветровую, геотермальную энергию, биомассу и энергию Мирового океана.

Энергия Солнца

В последнее время интерес к проблеме использования солнечной энергии резко возрос, и хотя этот источник также относится к возобновляемым, внимание, уделяемое ему во всем мире, заставляет нас рассмотреть его возможности отдельно. Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики. Заметим, что использование всего лишь 0,0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0.5 % - полностью покрыть потребности на перспективу. К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения.

Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества нужно разместить их на территории 130 000 км 2 ! Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счёт солнечной энергии, поглощённой коллектором, жидкость поступает для непосредственного использования. Согласно расчетам изготовление коллекторов солнечного излучения площадью 1 км 2 , требует примерно 10 4 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1.17*10 9 тонн.

Ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1*10 6 до 3*10 6 км 2 . В то же время общая площадь пахотных земель в мире составляет сегодня 13*10 6 км 2 . Солнечная энергетика относится к наиболее материалоёмким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт в год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов.

В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов. Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они проведут на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы.

Первые попытки использования солнечной энергии на коммерческой основе относятся к 80-м годам прошлого столетия. Крупнейших успехов в этой области добилась фирма Loose Industries (США). Ею в декабре 1989 года введена в эксплуатацию солнечно-газовая станция мощностью 80 МВт. Здесь же, в Калифорнии, в 1994 году было введено еще 480 МВт электрической мощности, причем, стоимость 1 кВт/ч энергии – 7-8 центов. Это ниже, чем на традиционных станциях. В ночные часы и зимой энергию дает, в основном, газ, а летом и в дневные часы – солнце. Электростанция в Калифорнии продемонстрировала, что газ и солнце, как основные источники энергии ближайшего будущего, способны эффективно дополнять друг друга. Поэтому не случаен вывод, что в качестве партнера солнечной энергии должны выступать различные виды жидкого или газообразного топлива. Наиболее вероятной “кандидатурой” является водород.

Его получение с использованием солнечной энергии, например, путем электролиза воды может быть достаточно дешевым, а сам газ, обладающий высокой теплотворной способностью, легко транспортировать и длительно хранить. Отсюда вывод: наиболее экономичная возможность использования солнечной энергии, которая просматривается сегодня – направлять ее для получения вторичных видов энергии в солнечных районах земного шара. Полученное жидкое или газообразное топливо можно будет перекачивать по трубопроводам или перевозить танкерами в другие районы. Быстрое развитие гелиоэнергетики стало возможным благодаря снижению стоимости фотоэлектрических преобразователей в расчете на 1 Вт установленной мощности с 1000 долларов в 1970 году до 3-5 долларов в 1997 году и повышению их КПД с 5 до 18%. Уменьшение стоимости солнечного ватта до 50 центов позволит гелиоустановкам конкурировать с другими автономными источниками энергии, например, с дизельэлектростанциями.

Ветровая энергия

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории от наших западных границ до берегов Енисея. Богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана, где она особенно необходима мужественным людям, обживающим эти богатейшие края. Почему же столь обильный, доступный да и экологически чистый источник энергии так слабо используется? В наши дни двигатели, использующие ветер, покрывают всего одну тысячную мировых потребностей в энергии. Техника XX века открыла совершенно новые возможности для ветроэнергетики, задача которой стала другой - получение электроэнергии. В начале века Н.Е. Жуковский разработал теорию ветродвигателя, на основе которой могли быть созданы высокопроизводительные установки, способные получать энергию от самого слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются достижения многих отраслей знания. В наши дни к созданию конструкций ветроколеса - сердца любой ветроэнергетической установки привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти, исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Первой лопастной машиной, использовавшей энергию ветра, был парус. Парус и ветродвигатель кроме одного источника энергии объединяет один и тот же используемый принцип. Исследования Ю. С. Крючкова показали, что парус можно представить в виде ветродвигателя с бесконечным диаметром колеса. Парус является наиболее совершенной лопастной машиной, с наивысшим коэффициентом полезного действия, которая непосредственно использует энергию ветра для движения.

Ветроэнергетика, использующая ветроколеса и ветрокарусели, возрождается сейчас, прежде всего, в наземных установках. В США уже построены и эксплуатируются коммерческие установки. Проекты наполовину финансируются из государственного бюджета. Вторую половину инвестируют будущие потребители экологически чистой энергии.

Первые разработки теории ветродвигателя относятся к 1918 г. В. Залевский заинтересовался ветряками и авиацией одновременно. Он начал создавать полную теорию ветряной мельницы и вывел несколько теоретических положений, которым должна отвечать ветроустановка.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был обособлен от общих тенденций времени – использовать ветер, где это только возможно. Первоначально наибольшее распространение ветроустановки получили в сельском хозяйстве. Воздушный винт использовали для привода судовых механизмов. На всемирно известном “Фраме” он вращал динамомашину. На парусниках ветряки приводили в движение насосы и якорные механизмы.

В России к началу прошлого века вращалось около 2500 тысяч ветряков общей мощностью миллион киловатт. После 1917 года мельницы остались без хозяев и постепенно разрушились. Правда, делались попытки использовать энергию ветра уже на научной и государственной основе. В 1931 году вблизи Ялты была построена крупнейшая по тем временам ветроэнергетическая установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000 кВт. Но реализовать его не удалось, так как Институт ветроэнергетики, занимавшийся этой проблемой, был закрыт.

В США к 1940 году построили ветроагрегат мощностью в 1250 кВт. К концу войны одна из его лопастей получила повреждение. Ее даже не стали ремонтировать – экономисты подсчитали, что выгодней использовать обычную дизельную электростанцию. Дальнейшие исследования этой установки прекратились.

Неудавшиеся попытки использовать энергию ветра в крупномасштабной энергетике сороковых годов XX века не были случайны. Нефть оставалась сравнительно дешевой, резко снизились удельные капитальные вложения на крупных тепловых электростанциях, освоение гидроэнергии, как тогда казалось, гарантирует и низкие цены и удовлетворительную экологическую чистоту.

Существенным недостатком энергии ветра является ее изменчивость во времени, но его можно скомпенсировать за счет расположения ветроагрегатов. Если в условиях полной автономии объединить несколько десятков крупных ветроагрегатов, то средняя их мощность будет постоянной. При наличии других источников энергии ветрогенератор может дополнять существующие. И, наконец, от ветродвигателя можно непосредственно получать механическую энергию.

Термальная энергия земли

Издавна люди знают о стихийных проявлениях гигантской энергии, таящейся в недрах земного шара. Мощность извержения многократно превышает мощность самых крупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить не приходится - нет пока у людей возможностей обуздать эту непокорную стихию, да и, к счастью, извержения эти достаточно редкие события. Но это проявления энергии, таящейся в земных недрах, когда лишь крохотная доля этой неисчерпаемой энергии находит выход через огнедышащие жерла вулканов. Маленькая европейская страна Исландия полностью обеспечивает себя помидорами, яблоками и даже бананами! Многочисленные исландские теплицы получают энергию от тепла земли - других местных источников энергии в Исландии практически нет. Зато очень богата эта страна горячими источниками и знаменитыми гейзерами-фонтанами горячей воды, с точностью хронометра вырывающейся из-под земли. И хотя не исландцам принадлежит приоритет в использовании тепла подземных источников, жители этой маленькой северной страны эксплуатируют подземную котельную очень интенсивно.

Рейкьявик, в которой проживает половина населения страны, отапливается только за счет подземных источников. Но не только для отопления черпают люди энергию из глубин земли. Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 году в небольшом итальянском городке Лардерелло. Постепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовались новые источники горячей воды, и в наши дни мощность станции достигла уже внушительной величины - 360 тысяч киловатт. В Новой Зеландии существует такая электростанция в районе Вайракеи, ее мощность 160 тысяч киловатт. В 120 километрах от Сан-Франциско в США производит электроэнергию геотермальная станция мощностью 500 тысяч киловатт.

Энергия внутренних вод

Раньше всего люди научились использовать энергию рек. Но в золотой век электричества, произошло возрождение водяного колеса в виде водяной турбины. Электрические генераторы, производящие энергию, необходимо было вращать, а это вполне успешно могла делать вода. Можно считать, что современная гидроэнергетика родилась в 1891 году. Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колес мог бы оказать немалую помощь гидроэнергетикам.

Однако, чтобы привести во вращение мощные гидротурбины, нужно накопить за плотиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объем гигантских египетских пирамид по сравнению с ним покажется ничтожным. В 1926 году в строй вошла Волховская ГЭС, в следующем началось строительство знаменитой Днепровской. Энергетическая политика нашей страны, привела к тому, что у нас развита система мощных гидроэлектрических станций. Ни одно государство не может похвастаться такими энергетическими гигантами, как Волжские, Красноярская и Братская, Саяно-Шушенская ГЭС. Энергоустановка на реке Ранс, состоящая из 24 реверсивных турбогенераторов, и имеющая выходную мощность 240 мегаватт - одна из наиболее мощных гидроэлектростанций во Франции. Гидроэлектростанции являются наиболее экономически выгодным источником энергии. Но имеют недостатки - при транспортировке электроэнергии по линиям электропередач происходят потери до 30% и создаётся экологически опасное электромагнитное излучение. Пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии.

Энергия биомассы

В США в середине 70-х годов группа специалистов в области исследования океана, морских инженеров и водолазов создала первую в мире океанскую энергетическую ферму на глубине 12 метров под залитой солнцем гладью Тихого океана вблизи города Сан-Клемент. На ферме выращивались гигантские калифорнийские бурые водоросли. По мнению директора проекта доктора Говарда А. Уилкокса, сотрудника Центра исследования морских и океанских систем в Сан-Диего (Калифорния), "до 50 % энергии этих водорослей может быть превращено в топливо - в природный газ метан. Океанские фермы будущего, выращивающие бурые водоросли на площади примерно 100 000 акров (40 000 га), смогут давать энергию, которой хватит, чтобы полностью удовлетворить потребности американского города с населением в 50 000 человек".

К биомассе, кроме водорослей, можно также отнести и продукты жизнедеятельности домашних животных. Так, 16 января 1998 года в газете “Санкт Петербургские Ведомости” была напечатана статья, под названием “Электричество... из куриного помёта” в которой говорилось о том, что находящаяся в финском городе Тампере дочерняя фирма международного норвежского судостроительного концерна Kvaerner стремится получить поддержку ЕС для сооружения в британском Нортхэмптоне электростанции, действующей... на курином помете. Проект входит в программу EС Thermie, которая предусматривает развитие новых, нетрадиционных, источников энергии и методов сбережения энергетических ресурсов. Комиссия ЕС распределила 13 января 140 млн ЭКЮ среди 134 проектов.

Спроектированная финской фирмой силовая установка будет сжигать в топках 120 тысяч тонн куриного помета в год, вырабатывая 75 млн киловатт-часов энергии.

Заключение

Можно выделить ряд общих тенденций и особенностей в развитии энергетики мира в начавшемся столетии.

1. В XXI в. неизбежен значительный рост мирового потребления энергии, в первую очередь, в развиваюшихся странах. В промышленно развитых странах энергопотребление может стабилизироваться примерно на современном уровне или даже снизиться к концу века. По низкому прогнозу, сделанному авторами, мировое потребление конечной энергии может составить в 2050 г. 350 млн Тдж/год, в 2100 г. - 450 млн Тдж/год (при современном потреблении около 200 млн Тдж/год).

2. Человечество в достаточной мере обеспечено энергетическими ресурсами на XXI век, но удорожание энергии неизбежно. Ежегодные затраты на мировую энергетику возрастут в 2,5-3 раза к середине века и в 4-6 раз к концу его по сравнению с 1990 г. Средняя стоимость единицы конечной энергии увеличится в эти сроки, соответственно, на 20-30 и 40-80 % (увеличение цен на топливо и энергию может быть еще значительнее).

3. Введение глобальных ограничений на выбросы СО 2 (наиболее важного тепличного газа) очень сильно повлияет на структуру энергетики регионов и мира в целом. Попытки сохранения глобальных выбросов на современном уровне следует признать нереальными из-за трудно разрешимого противоречия: дополнительные затраты на ограничение выбросов СО 2 (около 2 трлн долл./год в середине века и более 5 трлн долл./год в конце века) должны будут нести преимущественно развивающиеся страны, которые, между тем, "не виновны" в создавшейся проблеме и не имеют необходимых средств; развитые же страны вряд ли захотят и смогут оплатить такие затраты. Реалистичным с точки зрения обеспечения удовлетворительных структур энергетики регионов мира (и затрат на ее развитие) можно считать ограничение во второй половине века глобальных выбросов СО 2 до 12-14 Гт С/год, т.е. до уровня примерно в два раза выше, чем было в 1990 г. При этом сохраняется проблема распределения квот и дополнительных затрат на ограничение выбросов между странами и регионами.

4. Развитие ядерной энергетики представляет наиболее эффективное средство снижения выбросов СО 2 . В сценариях, где вводились жесткие или умеренные ограничения на выбросы СО 2 и отсутствовали ограничения на ядерную энергетику, оптимальные масштабы ее развития получились чрезвычайно большими. Другим показателем ее эффективности явилась "цена" ядерного моратория, которая при жестких ограничениях на выбросы СО 2 выливается в 80-процентное увеличение затрат на мировую энергетику (более 8 трлн долл./год в конце XXI в.). В связи с этим были рассмотрены сценарии с "умеренными" ограничениями на развитие ядерной энергетики для поиска реально возможных альтернатив.

5. Непременное условие перехода к устойчивому развитию - помощь (финансовая, техническая) наиболее отсталым странам со стороны развитых стран. Для получения реальных результатов такая помощь должна быть оказана в самые ближайшие десятилетия, с одной стороны, для ускорения процесса приближения уровня жизни развивающихся стран к уровню развитых, а с другой - чтобы такая помощь еще могла составить заметную долю в быстро увеличивающемся суммарном ВВП развивающихся стран.

Литература

1. Еженедельная газета сибирского отделения российской академии наук N 3 (2289) 19 января 2001 г

2. Антропов П.Я. Топливно-энергетический потенциал Земли. М., 1994

3. Одум Г., Одум Е. Энергетический базис человека и природы. М., 1998

Проблема энергетическая рано или поздно настигает каждое государство на планете. Запасы недр Земли не бесконечны, поэтому планирование будущего является основной задачей исследовательских организаций. На данный момент человечество не придумало альтернативу основным ресурсам, необходимым для ведения жизнедеятельности.

Основная забота человечества

Проблема энергетическая затрагивает каждую ячейку общества. Основные цели использования природных ресурсов - это:

  • обогрев жилья;
  • транспортировка грузов;
  • использование в промышленности.

Естественные источники энергии не могут в полном объёме перекрыть получаемый коэффициент полезного действия от угля, нефти, газа. Насущный вопрос экологичности переработки ископаемых в энергию также волнует все исследовательские сообщества.

Условия изменились

Проблема энергетическая сформировалась десятки лет назад после резкого роста потребления ресурсов, связанного с развитием автотранспортной промышленности.

Кризис разрастался, и были сделаны выводы, что запасов нефти хватит не более чем на 35 лет. Но это мнение поменялось после открытия новых месторождений. Развитие топливной промышленности привело к ухудшению экологии в мире, что породило появление новой проблемы: как сохранить растительность и животный мир.

Проблема энергетическая рассматривается не только как вопрос добычи и запасов ресурсов, но и как побочные эффекты от грязного производства топлива. Из-за желания обладать месторождениями между странами возникают конфликты, перерастающие в затяжную войну. регионов зависит от метода добычи энергии, от доступа к ней, месту разработки и наполнения баз под хранение ресурсов.

Решение энергетической проблемы поможет улучшить ситуацию сразу в нескольких отраслях, что актуально для всех слоев населения. Владение основной частью ресурсов дает возможности для управления странами; здесь затрагивается интерес движения к глобализации экономики.

Варианты закрытия вопроса о топливном кризисе

Основные пути решения проблем уже изучены экономистами. Пока что не существует реально действующего ответа на этот вопрос. Все варианты выхода из топливного кризиса длительны и рассчитаны на сотни лет. Но постепенно человечество осознает необходимость кардинальных действий в направлении замены традиционных методов добычи энергии на экологичные и более полезные.

Проблемы энергетического развития будут расти с ростом технологичности производств и транспорта. В некоторых регионах уже наблюдается нехватка ресурсов в энергетической отрасли. Китай, к примеру, достиг предела в развитии энергетической промышленности, а Великобритания стремится сократить эту область для восстановления экологической обстановки.

Основная же тенденция развития энергетики в мире движется к наращиванию объема поставок энергии, что неизбежно ведет к кризису. Однако у стран, затронутых топливным кризисом 70-х годов, уже выработан механизм защиты от скачков в экономике. Предприняты глобальные меры по энергосбережению, дающие положительные результаты уже в настоящее время.

Экономия расхода топлива

Энергетический кризис частично решается за счет мер сбережения. Экономически подсчитано, что единица сэкономленного топлива дешевле на одну треть добытой из недр Земли. Поэтому на каждом предприятии нашей планеты введён режим оправданной экономии энергии. В результате такой подход ведёт к улучшению показателей.

Глобальная энергетическая проблема требует объединения исследовательских институтов всего мира. По результатам экономии расхода энергии в Великобритании экономические показатели повысились в 2 раза, а в США - в 2,5. В качестве альтернативных решений развивающиеся страны проводят действия, направленные на создание энергоемких производств.

Энергетическая и сырьевая проблема присутствует в более острой форме в развивающихся странах, где потребление энергии растёт с повышением уровня жизни. Развитые страны уже приспособились к меняющимся условиям и выработали механизм защиты от резких скачков спроса потребителей. Поэтому у них показатели расхода ресурсов оптимальные и меняются незначительно.

Трудности на пути сбережения ресурсов

При оценке энергозатрат учитывается целый комплекс энергетических проблем. Одной из главных является дешевизна нефти и газа, что мешает внедрению экологически чистых преобразователей естественной энергии (солнца, движения воды, ветра океана) в электрическую. Технологии вносят существенный вклад в энергосбережение. Учёные постоянно находятся в поиске более доступных и экономически выгодных способов выработки энергии. К таким относят электромобили, солнечные батареи, аккумуляторы, изготовленные из отходов.

Наиболее интересные для экономики идеи и изобретения уже получили одобрение со стороны жителей стран Германии, Швейцарии, Франции, Великобритании. Путём замещения переработки ископаемых экологически чистыми преобразователями энергии была нехватки ресурсов. Говорить о мировом кризисе из-за ограниченных запасов ископаемых в настоящее время уже не приходится.

Варианты замещения энергий

Задачей исследовательских институтов на пути решения энергетической нехватки в определённых регионах является поиск варианта развития технологий, необходимых для регулирования дисбаланса ресурсов. Так, в пустыне лучше развивать добычу электричества из солнечных лучей, а в дождливых тропиках стараются использовать гидроэлектростанции.

Для сохранения экономических и экологических показателей на должном уровне в первую очередь стараются заменить использование первичных ресурсов: нефти и угля. Для общества более выгоден природный газ и другие альтернативные источники энергии.

Большинство преобразователей чистых энергий требует колоссальных материальных затрат на их внедрение в повседневную жизнь. К этому ещё не готовы развивающиеся страны. Частично проблема нехватки энергии решается равномерным расселением жителей мегаполисов по свободным территориям. Этот процесс должен сопровождаться постройкой новых экологичных станций по переработке естественных энергий в электричество, тепло.

Вред от первичных ресурсов

Основными угрозами для природы и человека являются добыча нефти на шельфе, выбросы продуктов сгорания в атмосферу, результаты химических и атомных реакций, открытая добыча угля. Эти процессы требуется вовсе прекратить, решением может стать развитие научной индустрии в отстающих регионах. Потребление ресурсов растёт с развитием общества, перенаселением местности и открытием мощных производств.

Глобальная энергетическая проблема - это проблема обеспечения человечества топливом и энергией в настоящее время и в обозримом будущем.

Локальные энергетические кризисы возникали и в доиндустриальной экономике (например, в Англии XVIII в. в связи с исчерпанием лесных ресурсов и переходом на уголь). Но как глобальная проблема нехватка энергоресурсов проявилась в 70-х гг. XX в., когда разразился энергетический кризис, выразившийся в резком повышении цены на нефть (в 14,5 раза в 1972-1981 гг.), что создало серьезные трудности для мировой экономики . Хотя многие затруднения того времени были преодолены, глобальная проблема обеспечения топливом и энергией сохраняет свое значение и в наши дни.

Главной причиной возникновения глобальной энергетической проблемы следует считать быстрый рост потребления минерального топлива в XX в. Со стороны предложения он вызван открытием и эксплуатацией огромных нефтегазовых месторождений в Западной Сибири, на Аляске, на шельфе Северною моря, а со стороны спроса - увеличением автомобильного парка и ростом объема производства полимерных материалов.

Наращивание добычи топливно-энергетических ресурсов повлекло за собой серьезное ухудшение экологической ситуации (расширение открытой добычи полезных ископаемых, добыча на шельфе и др.). А рост спроса на эти ресурсы усилил конкуренцию как стран - экспортеров топливных ресурсов за лучшие условия продажи, так и между странами-импортерами за доступ к энергетическим ресурсам.

Обеспеченность мирового хозяйства топливно-энергетическими ресурсами

Вместе с тем происходит дальнейшее наращивание ресурсов минерального топлива. Под влиянием энергетического кризиса активизировались крупномасштабные геологоразведочные работы , приведшие к открытию и освоению новых месторождений энергоресурсов. Соответственно возросли и показатели обеспеченности важнейшими видами минерального топлива: считается, что при современном уровне добычи разведанных запасов угля должно хватить на 325 лет. природного газа - на 62 года, а нефти - на 37 лет (если в начале 70-х гг. считалось, что обеспеченность мировой экономики запасами нефти не превышает 25-30 лет; разведанные запасы угля еще в 1984 г. оценивались в 1,2 трлн т, то к концу 90-х гг. они выросли до 1,75 трлн т).

В результате преобладавшие в 70-х гг. пессимистические прогнозы обеспеченности потребностей мировой экономики в энергоносителях (так, тогда считалось, что запасов нефти хватит не более чем на 25-30 лет) сменились оптимистическими взглядами, основанными на актуальной информации.

Основные пути решения глобальной энергетической проблемы

Экстенсивный путь решения энергетической проблемы предполагает дальнейшее увеличение добычи энергоносителей и абсолютный рост энергопотребления. Этот путь остается актуальным для современной мировой экономики. Мировое энергопотребление в абсолютном выражении с 1996 по 2003 г. выросло с 12 млрд до 15,2 млрд т условного топлива. Вместе с тем ряд стран сталкивается с достижением предела собственного производства энергоносителей (Китай) либо с перспективой сокращения этого производства (Великобритания). Такое развитие событий побуждает к поискам способов более рационального использования энергоресурсов.

На этой основе получает импульс интенсивный путь решения энергетической проблемы, заключающийся прежде всего в увеличении производства продукции на единицу энергозатрат. Энергетический кризис 70-х гг. ускорил развитие ивнедрение энергосберегающих технологий , придает импульс структурной перестройке экономики. Эти меры, наиболее последовательно проводимые развитыми странами, позволили в значительной степени смягчить последствия энергетического кризиса.

В современных условиях тонна сбереженного в результате сберегающих мер энергоносителя обходится в 3-4 раза дешевле, чем тонна дополнительно добытого. Это обстоятельство явилось для многих стран мощным стимулом повышения эффективности использования энергоносителей . За последнюю четверть XX в. энергоемкость хозяйства США снизилась вдвое, а Германии - в 2,5 раза.

Под воздействием энергетического кризиса развитые страны в 70-80-х гг. провели масштабную структурную перестройку экономики в направлении снижения доли энергоемких производств. Так, энергоемкость машиностроения и особенно сферы услуг в 8-10 раз ниже, чем в ТЭК или в металлургии. Энергоемкие производства сворачивались и переводились в развивающиеся страны. Структурная перестройка в направлении энергосбережения приносит до 20% экономии топливно-энергетических ресурсов в расчете на единицу ВВП.

Важным резервом повышения эффективности использования энергии является совершенствование технологических процессов функционирования аппаратов и оборудования. Несмотря на то что это направление является весьма капиталоемким, тем не менее эти затраты в 2-3 раза меньше расходов, необходимых для эквивалентного повышения добычи (производства) топлива и энергии. Основные усилия в этой сфере направлены на совершенствование двигателей и всего процесса использования топлива.

В то же время многие государства с формирующимися рынками (Россия, Украина, Китай, Индия) продолжают развивать энергоемкие производства (черная и цветная металлургия, химическая промышленность и др.), а также использовать устаревшие технологии. Более того, в этих странах следует ожидать роста энергопотребления как в связи с повышением жизненного уровня и изменением образа жизни населения, так и с нехваткой у многих из этих стран средств на снижение энергоемкости хозяйства. Поэтому в современных условиях именно в странах с формирующимися рынками происходит рост потребления энергетических ресурсов, тогда как в развитых странах потребление сохраняется на относительно стабильном уровне. Но необходимо иметь в виду, что энергосбережение в наибольшей степени проявило себя в промышленности, но под влиянием дешевой нефти 90-х гг. слабо сказывается на транспорте.

На современном этапе и еще на долгие годы вперед решение глобальной энергетической проблемы будет зависеть от степени снижения энергоемкости экономики, т.е. от расхода энергии на единицу произведенного ВВП.

Таким образом, глобальной энергетической проблемы в ее прежнем понимании как угрозы абсолютной нехватки ресурсов в мире не существует. Тем не менее проблема обеспечения энергоресурсами сохраняется в модифицированном виде.

Проблема Мирового океана - это проблема сохранения и рационального использования его пространств и ресурсов.

В настоящее время Мировой океан как замкнутая экологическая система с трудом выдерживает во много раз усилившуюся антропогенную нагрузку, и создается реальная угроза его гибели. Поэтому глобальная проблема Мирового океана - это, прежде всего, проблема его выживания. Как сказал Тур Хейердал, «мертвый океан - мертвая планета».

Правовой аспект использования океана

Вплоть до 70-х гг. прошлого века всю деятельность в Мировом океане осуществляли в соответствии с общепризнанным принципом свободы открытого моря, под которым понимаюсь все морское пространство за пределами территориальных вод, ширина которых составляла всего 3 морские мили.

В XX в. ситуация в корне изменилась. Многие страны, прежде всего развивающиеся, в одностороннем порядке начали присваивать обширные прибрежные акватории до 200 (и даже более) морских миль от берега и распространять в их пределах свою юрисдикцию на отдельные виды морской деятельности, а некоторые страны даже объявили свой суверенитет над этими акваториями. К концу 70-х гг. о введении 200-мильных зон (их назвали экономическими зонами) объявили уже более 100 стран, в том числе и СССР.

В 1982 г. III Конференция ООН по морскому праву, принявшая соответствующую Конвенцию, подвела правовую черту под различными видами морской деятельности. Океан был объявлен «общим наследием человечества». Были официально закреплены 200-мильные исключительные экономические зоны, перекрывшие 40% площади Мирового океана, где вся хозяйственная деятельность подпадала под юрисдикцию соответствующих государств. Шельфовые зоны (даже если они превосходят по ширине экономическую зону) также подпали под юрисдикцию этих государств. Дно остальной, глубоководной части океана, богатой железо-марганцевыми конкрециями, получило статус международного района, где вся хозяйственная деятельность должна осуществляться через специально созданный Международный орган поморскому дну (International Seabed Authority), который уже поделил глубоководные районы океана между крупнейшими державами мира; определенную часть дна получил и Советский Союз. В результате принцип свободы открытого моря прекратил свое существование.

Экономический аспект использования океана

Сегодня это острейшая проблема, которая решается всем человечеством в масштабах всемирного хозяйства. ИздавнаМировой океан служит транспортной артерией . Морской транспорт обеспечивает торгово-экономические связи, на него приходится более 60% мирового грузооборота. Во второй половине XX в. бурному развитию морского транспорта способствовали формирование очень большого географического разрыва между районами производства и потребления, увеличение зависимости экономически развитых стран от поставок сырья и топлива. Однако начиная с 80-х гг. рост грузооборота морского транспорта прекратился. В настоящее время морское торговое судоходство даст более 100 млрд долл. дохода в год.

Мировой океан - кладезь природных ресурсов. Издавна человечество использовало его биологические ресурсы. В настоящее время морской рыболовный промысел дает продукции примерно на 60 млрд долл. в год. Основная часть мировой морской продукции - рыба (около 85%). В течение XX в. объемы вылова рыбы неуклонно росли. Исключение составляли годы Второй мировой войны и 70-е гг., когда дал о себе знать резкий перелов. Однако начиная с 80-х гг. рост объемов вылова восстановился. Сейчас они превышают 125 млн т в год. Следует отметить, что хотя в 80-х гг. темпы добычи морских биоресурсов были восстановлены, «качество» ресурсов заметно снизилось.

Сегодня 90% рыбы и других морских продуктов добывается в шельфовых районах. Лидером мирового улова является Китай (около 37 млн т, но более половины его улова - пресноводная рыба). Далее идут Перу (около 10 млн т), Чили, Япония, США; Россия находится на 8-м месте (чуть более 4 млн т). Дальнейшего роста добычи рыбы не предвидится, так как это может привести к необратимому подрыву биоресурсов океана.

Помимо биологических ресурсов Мировой океан обладает колоссальными минеральными богатствами. Среди них наиболее важны нефть и природный газ, добыча которых в последние десятилетия росла особо быстрыми темпами на шельфе Мирового океана; уже сегодня их добыча даст продукции более чем на 200 млрд долл. в год.

При современном техническом уровне добыча нефти идет на глубинах до 500 м,т.е. уже за пределами континентального шельфа. Соответственно растет и себестоимость «морской» нефти, особенно в арктических широтах. Именно удорожанием «морской» нефти объясняется тот факт, что в последнее десятилетие темпы добычи нефти в океане несколько снизились.

Океан также богат гидрохимическим сырьем, растворенным в водах океана: солями натрия, магния, кальция, калия, брома, йода и многих других элементов. Весьма ценными являются прибрежные россыпи тяжелых металлов, являющихся стратегическим сырьем. Другая нетронутая кладовая Мирового океана - молодые рифтовые зоны. В результате контакта с выходящим мантийным веществом вода нагревается до 50-60°С. соленость поднимается до 260%. В образовавшемся горячем рассоле содержатся ценнейшие металлы, на дне формируются сульфидные руды редких металлов, концентрация которых иногда в 10 раз больше, чем в железо-марганцевых конкрециях и уж тем более в «сухопутных» рудах.

Мировой океан - колоссальный источник возобновляемых энергетических ресурсов, однако энергия океана пока в очень малой степени поставлена на службу человеку. В то же время использование энергии морских приливов, течений, волн, градиентов температуры почти не наносит вреда окружающей среде. Подавляющая часть энергии океана неуправляема. Неисчерпаемым источником энергии является термоядерный синтез с применением дейтерия - тяжелого водорода. Количество дейтерия, содержащегося в I л морской воды, может дать столько же энергии, сколько 120 л бензина.

Демографический аспект использования океана

Результатом активного освоения ресурсов океана стало во много раз усилившееся «демографическое давление» на океаническую среду. Население все в большей степени смещается к прибрежной зоне. Так, в 100-километровой прибрежной полосе сейчас проживает порядка 2,5 млрд человек, т.е. почти половина населения Земли. А если к этой цифре добавить временных рекреантов, прибывающих со всего света, и пассажиров круизных лайнеров, то число «морских» жителей заметно увеличится. Причем площадь урбанизированных территорий в прибрежной зоне значительно больше, чем во внутренних районах, благодаря тому, что происходит глобальный процесс географического смешения отраслей промышленности к морю, в портовые районы, где формируются мощные пор- тово-промышленные комплексы. Только морской тур и з м (пляжное хозяйство, инфраструктура и круизный туризм) дает около 50 млрд долл. дохода, т.е. почти столько же, сколько дает морское рыболовство.

Оборонные и геополитические аспекты использования океана

В настоящее время Мировой океан рассматривается в качестве основного потенциального театра и стартовой площадки военных действий. В отличие от малоподвижных ракет наземного базирования оружие морского базирования обеспечивает максимальную мобильность с географической и стратегической точек зрения. Известно, что только пять крупных морских держав имеют на своих надводных и подводных судах порядка 15 тыс. ядерных боезарядов, способных уничтожить все живое на Земле. Поэтому океан превратился в важнейший центр геополитических интересов большинства стран мира. Здесь сталкиваются деятельность и, соответственно, интересы самых различных стран мира: развитых и развивающихся, прибрежных и континентальных, островных, архипелажных и материковых, богатых ресурсами и бедных, сильно заселенных и малозаселенных и т.д.

Экологический аспект использования океана

Мировой океан превратился в своеобразный фокус, где сошлись правовые, оборонные, геополитические, экономические, научно- технические, научно-исследовательские, демографические проблемы использования его ресурсов и пространств, которые, вместе взятые, способствуют возникновению еще одой крупнейшей глобальной проблемы современности - экологической. Океан - главный регулятор содержания основных биогенных элементов (кислорода и водорода) в атмосфере: океан - это фильтр, очищающий атмосферу от вредных продуктов природного и антропогенного происхождения; океан, кроме всего прочего - огромный аккумулятор и ассенизатор многих продуктов жизнедеятельности человека.

В некоторых акваториях, где деятельность человека наиболее активна, океану стало трудно самоочищаться, поскольку его способность к самоочищению не беспредельна. Увеличение объема поступающих в океан загрязняющих веществ может вызвать качественный скачок, который проявится в резком нарушении баланса океанической экосистемы, что приведет к неминуемой «гибели» океана. В свою очередь «гибель» океана неминуемо влечет за собой гибель всего человечества.

Московский государственный институт международных отношений (У) МИД России

кафедра мировой экономики

Доклад на тему
«Энергетическая проблема мира и пути её решения»

Работу выполнила: студентка 11 группы I курса факультета МЭО
Бадовская Н.В.
Научный руководитель: Комиссарова Ж.Н.

Москва
2006

Всё живое на Земле нуждается в энергии. Однако помимо биологических нужд, человечество по мере технического и научного прогресса становится всё боле уязвимо в своей зависимости от внешних источников энергии, необходимых для производства множества товаров и услуг. В целом, энергия позволяет людям жить в меняющихся природных условиях и условиях большой плотности населения, а также контролировать своё окружение. Степень такой зависимости определяется многими факторами – начиная климатом и заканчивая уровнем жизни в данной стране: очевидно, что чем комфортнее человек делает свою жизнь, тем больше он зависит от внешних источников энергии. Великолепным примером такой зависимости может стать США, по словам Дж. Буша, «пристрастившиеся к нефти, импортируемой из нестабильных регионов», и Европа, практически всецело полагающаяся на поставки энергоресурсов из России. Новые технологии позволяют снизить потребление энергии, сделать его более разумным и применять новейшие, наиболее эффективные способы её получения и использования.

Но потребление любых энергоресурсов имеет пределы количественного расширения. К началу XXI века многие вопросы уже достигли общемирового значения. Запасы одних из самых важных полезных ископаемых – нефти и газа – постепенно приближаются к истощению, а полное их исчерпание может произойти уже в ближайшее столетие.

Тесно связаны с энергетикой также экологические проблемы, сопряжённые со сказывающимся влиянием использования и переработки энергии, – в первую очередь, климатические изменения.

Таким образом, вопрос энергетики – одна из важнейших составляющих более глубокой и всеобъемлющей проблемы дальнейшего развития человечества, поэтому на сегодняшний день как никогда остро стоит задача найти новые выгодные источники энергии.

В настоящее время для производства энергии наиболее широко используются топливные ресурсы, обеспечивая около 75% её мировой выработки. О их преимуществах можно много говорить – они относительно локализованы в нескольких крупных скоплениях, легки в эксплуатации и дают дешёвую энергию (если, конечно, не учитывать ущерб от загрязнения). Но есть и ряд серьёзных недостатков:

    Запасы топливных ресурсов уже в обозримом будущем истощатся, что приведёт к тяжёлым последствиям для стран, зависящих от них.

    Добыча полезных ископаемых становится более тяжёлой, дорогой и опасной по мере того, как мы используем самые доступные бассейны.

    Нефтяная зависимость привела к фактической монополизации, войнам и социально-политической дестабилизации.

    Добыча полезных ископаемых вызывает тяжёлые экологические проблемы.

Одним из перспективных направлений энергетики является ядерная энергетика.

В атомных электростанциях электричество вырабатывается в ходе реакций ядерного распада, сопровождающихся огромным выделением энергии при сжигании относительно небольшого количества топлива. При данном уровне потребления исследованных месторождений урана хватит более чем на 5 000 000 000 лет – за это время успеет сгореть даже наше Солнце.

Вероятность катастроф и аварий на АЭС несколько сдерживает развитие этой отрасли, вызывая недоверие общественности к ядерной энергетике. Однако в исторической перспективе аварии на тепло- и гидроэлектростанциях стали причиной смерти куда большего количества людей, не говоря уже об ущербе экологии.

Ещё одним способом получения энергии, волнующим умы учёных уже не первое десятилетие, является ядерный синтез. При ядерном синтезе выделяется в сотни раз больше энергии, чем при распаде, а запасов топлива для таких реакторов хватит на многие миллиарды лет. Однако подобную реакцию пока что не удаётся поставить под контроль, и появление первых таких установок ожидается не ранее 2050 года.

Альтернативу этим видам энергоресурсов, возможно, смогут составить возобновляемые источники: гидроэнергия, энергия ветра и приливных волн, солнечная, геотермальная, термальная энергия вод океана и биоэнергия.

До промышленной революции возобновляемые ресурсы были основным источником энергии. Твёрдое биотопливо – к примеру, дерево – всё ещё сохраняет своё значение для бедного населения развивающихся стран.

Биомасса (сжигание органических материалов для генерирования энергии), биотопливо (переработка биоматериалов для синтеза этанола) и биогаз (анаэробная переработка биологически отходов) – ещё одни возобновляемые источники энергии, которые не стоит сбрасывать со счёта. Они не могут обеспечить производства энергии в глобальных масштабах, однако способны вырабатывать до 10 МВ/ч. К тому же они могут покрыть расходы на утилизацию биоотходов.

Гидроэнергия – единственный возобновляемый источник энергии из используемых в наше время, обеспечивающий значительную долю мирового производства энергии. Потенциал гидроэнергетики раскрыт незначительно, в долгосрочной перспективе объёмы получаемой энергии возрастут в 9-12 раз. Однако строительству новых дамб препятствуют сопряжённые с этим экологические нарушения. В этой связи возрастает интерес к проектам мини-гидроэлектростанций, которым удаётся избежать многих проблем больших дамб.

Солнечные батареи сегодня могут преобразовать около 20% поступающей солнечной энергии в электричество. Однако если создавать особые «светосборники» и занять ими хотя бы 1% земель, используемых под сельхозугодия, это могло бы покрыть всё современное энергопотребление. Причём производительность такого солнечного коллектора от 50 до 100 раз больше, чем производительность средней ГЭС. Солнечные батареи могут быть установлены и на свободной поверхности существующих промышленных инфраструктур, что позволит избежать изъятия земель у парковых и посевных площадей. В данный момент правительство Германии проводит подобную программу, за которой с интересом наблюдают прочие страны.

Благодаря исследованиям удалось выяснить, что фермы водорослей могут улавливать до 10%, термальные солнечные коллекторы – до 80% солнечной энергии, которая впоследствии может быть использована в различных целях.

Энергия ветра на сегодняшний день является одним из самых дешёвых возобновляемых источников. Потенциально она может обеспечить в пять раз больше энергии, чем потребляется в мире сегодня, или 40 раз перекрыть потребность в электричестве. Для этого потребуется занять ветряными электростанциями 13% всей суши, а именно те районы, где особенно сильны движения воздушных масс.

Скорости ветра в море примерно на 90% превосходят скорости ветра на суше, а это значит, что морские ветряные установки могут вырабатывать куда больше энергии.

Такой способ получения энергии также возымел бы действие на экологию, смягчая парниковый эффект.

Геотермальная энергия, термальная энергия океана и энергия приливных волн – единственные на данный момент возобновляемые источники, не зависящие от солнца, однако они «сосредоточены» в определённых областях. Вся доступная энергия приливов может обеспечить около четверти современного энергопотребления. В настоящее время существуют масштабные проекты создания приливных электростанций.

Геотермальная энергия имеет огромный потенциал, если принимать в расчет всё тепло, заключённое внутри Земли, хотя тепло, выходящее на поверхность, составляет 1/20 000 от той энергии, что мы получаем от Солнца, или около 2-3 раз больше энергии приливов.

На данном этапе главными потребителями геотермальной энергии являются Исландия и Новая Зеландия, хотя виды на такого рода разработки имеют многие страны.

Рассмотренные виды энергоресурсов отнюдь не лишены недостатков.

Применение большинства технологий, связанных с использованием возобновляемых ресурсов, требует больших затрат, и нередко локация таких станций крайне неудобна, что в конечном итоге делает эти источники нерентабельными и недоступными для потребителя. С другой стороны, многие источники позволяют создавать небольшие производства, расположенные в непосредственной близости от потребителя энергии, как, например, солнечные батареи.

Ещё одной проблемой является негативное воздействие на окружающую среду. К примеру, строительство плотин, как ни странно, способствует парниковому эффекту – разлагающаяся органика затопленных районов выделяет углекислый газ. В целом страдает вся экосистема перекрываемой реки.

Помимо геотермальных и гидроэлектрических ресурсов, которые обладают определённой спецификой местоположения, прочие альтернативные источники энергии зачастую оказываются более дорогими и неудобными в использовании, чем привычные топливные ископаемые. Пожалуй, единственной областью их применения остаются отдалённые районы с неразвитой инфраструктурой, где дешевле оказывается строить ветряные и прочие станции, чем подвозить топливо морем или сушей, а также малоразвитые регионы Земли.

Иной путь решения энергетической проблемы – это интенсификация. Новые технологии позволяют полнее использовать доступную энергию, повышая эффективность оборудования – например, более эффективные флуоресцентные лампы, двигатели, изоляционные материалы. Тепло, которое тратится впустую, уходя в окружающую среду, посредством теплообменников может быть использовано для нагревания воды и центрального отопления зданий.

Уже существующие электростанции могут работать более продуктивно при минимуме затрат и преобразований благодаря новым технологиям. Новые электростанции можно сделать более эффективными при помощи таких технологий, как «когенерирование». Новые архитектурные решения могут включать использование солнечных коллекторов. Светодиоды постепенно заменяют устаревшие электрические лампочки. Естественно, ни один из этих методов не предлагает технологии вечного двигателя, и часть энергии всегда уходит «на обогрев».

В отдалённом будущем огромное количество новых источников энергии могут принести исследовании космоса, хотя вряд ли они актуальны при решении сегодняшних проблем энергетики.

В ближайшей же перспективе мы можем позволить себе гелиоэнергетические орбитальные станции, 24 часа в сутки собиравшие бы энергию солнца и передававшие бы её на Землю посредством микроволн. Фундаментальные исследования в этой области позволят в дальнейшем сделать такой вид получения энергии рентабельным и конкурентоспособным в сравнении с земными источниками.

Ядерное топливо теоретически можно добывать на астероидах, однако технические препятствия бурению скважин на астероидах гораздо тяжелее преодолеть, чем трудности, связанные с использованием огромных запасов урана-238 на Земле.

Другая интересная возможность – это добыча изотопа гелия-3, недоступного на Земле, на Луне. Этот вид топлива может быть использован в особом виде реакций распада, имеющих преимущества по сравнению с расщеплением обычного урана.

Ну, а в самом отдалённом будущем, человечество, освоившееся в космосе, будет обладать огромным выбором энергоресурсов. И тогда, вероятно, оно сможет использовать гигантский потенциал Чёрных дыр, о возможности чего учёные задумываются уже сейчас.

Дальнейшее развитие энергетики в любом случае столкнётся с трудностями: растущим населением, удовлетворением запросов более высокого уровня жизни, требованием более экологически чистого производства и исчерпанием полезных ископаемых. Для того, чтобы избежать энергетических кризисов, нужно помнить следующее:

    решение энергетической проблемы невозможно без обращения пристального внимания на экологический аспект;

    только комплексный подход, предусматривающий более эффективное использование как уже известных, так и альтернативных источников, позволит в дальнейшем удовлетворить потребность человечества в электроэнергии;

    разработка и внедрение новых технологий позволят открыть доступ к новым источникам энергии, недоступным на сегодняшний день.

В заключение хотелось бы привести слова секретаря Департамента Энергетики США Самюэля Бодмана: «На сегодня мировая экономика для того, чтобы развиваться, нуждается в нефти. Нам же необходимы пути достижения её роста, которые одновременно уменьшали бы нашу зависимость от топливных ископаемых и расширяли бы использование более чистых и надёжных источников энергии. Если говорить коротко, нам нужно разнообразие. Оно не будет дешевле или проще, но оно необходимо. В сущности, всё зависит от него. Поэтому надо просто его обеспечить».

На Земле, в связи со стремительным истощением сырьевых запасов возникла сырьевая проблема, имеющая общие черты с энергетической проблемой, поэтому специалисты рассматривают их в неразрывной связи, как общую топливно-сырьевую проблему планеты. Для развития цивилизации необходимо сырье и топливо, но, к сожалению, месторождения минерального и углеводородного сырья на планете истощаются, проблема его недостатка приобретает глобальные масштабы, подтвержденные сырьевым кризисом 70 годов.

Сырье – исходный материал для множества технологических процессов. Это понятие включает в себя вещества природного и синтетического происхождения, используемые в промышленном производстве как исходный материал для получения энергии и необходимой продукции. Существует разделение сырья по его происхождению, на промышленное и сельскохозяйственное. Но чаще всего термин - «сырьевые ресурсы», связывают с минеральным сырьем. Полезные ископаемые – основа развития и существования человечества. Промышленность на планете развивается стремительными темпами, потребность в сырье растет, следовательно, растут объемы добычи. К сожалению, запасы нефти, газа, железной руды и других ископаемых на планете ограничены, поэтому через некоторое время они будут исчерпаны.

Причины возникновения сырьевой проблемы:

  • Стремительный рост количества добываемого из недр планеты сырья.
  • Естественным истощением месторождений в результате добычи.
  • Разведанные запасы углеводородов не бесконечны.
  • Необходимость добычи обедненных руд с низким содержанием полезных веществ.
  • Увеличение расстояния между регионами добычи и переработки.
  • Необходимость использования месторождения с плохими горно-геологическими условиями.
  • Разработка вновь открытых месторождений в регионах со сложными природными условиями.

Вышеперечисленные причины оказывают огромное влияние на обеспеченность промышленности природными ресурсами на глобальном уровне, которая постоянно снижается. Расчеты обеспеченности ресурсами планеты, сделанные специалистами, использующими разные методики, часто не совпадают, между результатами возникают большие расхождения. В наше время назрела острая необходимость рационального использования и более полного извлечения из недр Земли минерального сырья. Например, современные технологии добычи нефти с низким коэффициентом извлечения, не превышающим 0,25-0,45, нужно усовершенствовать, ведь большая часть ценнейшего энергетического сырья остается в недрах. Если коэффициент извлечения увеличить даже на 1%, то при существующих объемах добычи нефти получим значительный экономический эффект. Если в 20 веке преобладала «ресурсная расточительность», то в 21 веке человечество вынуждено было перейти к рациональному потреблению ресурсов.

Основные моменты перехода:

  • Энергетический кризис 70-х годов дал толчок развитию энергосберегающих технологий и начался интенсивный путь развития всей мировой экономики. Уменьшение потребление энергии произошло в промышленной и непроизводственной сфере, что привело к существенной экономии углеводородного сырья.
  • Несовершенство традиционных технологий привело к тому, что только 20% добываемого сырья используется в готовой продукции, все остальное скапливается в отвалах. Они складываются из миллиардов тонн шлаковых отходов металлургии, зольных отходов ТЭС и огромного количества горных пород. Уже появились инновационные технологии, использующие отходы для извлечения из них металлов, химических веществ и производства строительных материалов. Такие технологии способствуют значительному снижению «ресурсной расточительности» и переходу к рациональному использованию ресурсов планеты.

Энергетическая проблема

Для цивилизации необходимо наличия топлива и энергии в долгосрочной перспективе. Но ограниченность количества и увеличение темпов потребления углеводородных и минерально-сырьевых ресурсов на Земле стало причиной возникновения энергетической проблемы.

Региональные кризисы возникали в отдельных государствах и в доиндустриальную эпоху. Яркий пример – в Англии 18 века вырубка лесов достигла таких размеров, что для отопления страна вынуждена была перейти на каменный уголь. Тогда это была локальная проблема, но во время мирового энергетического кризиса 70-х годов, она приобрела глобальный характер. Резко увеличившиеся цены на нефть привели к стагнации мировой экономики.

Кризис был преодолен, но проблема обеспеченности мировой экономики энергией и топливом никуда не исчезла, она сохранила свое значение. В среднем один рабочий на производстве использует количество энергии эквивалентное 100 л. с. Количество производимой энергии на жителя планеты – показатель качества жизни. Считается, что норма на душу населения – 10 кВт, а среднее значение для населения планеты всего 2 кВт.

Высокоразвитые страны мира уже достигли общепринятых норм выработки энергии на человека. Но нерациональное использование ресурсов, увеличение количества населения, неравномерное распределение сырья и топлива по регионам планеты, будут, приводить к постоянному увеличению их потребления и производства. Например, урановые руды, используемые в атомной энергетике, при современных темпах добычи будут полностью исчерпаны уже в первой половине 21 века.

Одна из причин топливно-энергетической проблемы – увеличение масштабов использования природных ресурсов, количество которых не безгранично. Бывшие социалистические страны отличались чрезвычайно затратной экономикой, в которой потери энергетических ресурсов были огромны. Положение, после распада СССР, немного улучшилось, но и сейчас страны СНГ на выработку единицы продукции используют сырья в 2 раза больше, чем Европейские страны. Увеличивается добыча нефти и газа. Разведаны и эксплуатируются богатейшие нефтегазовые месторождения Западной Сибири, на шельфе Северного моря, на Аляске с одновременным ухудшением экологической ситуации.

Ученые и специалисты произвели сложные расчеты, показавшие – если темпы использования каменного угля сохранятся, то его хватит на 325 лет, газа на 62 года, а запасы нефти истощатся через 37 лет. Постоянно открываются новые месторождения углеводородов, как на материке, так и на шельфе. Открытие новых энергетических источников разрушило пессимистические прогнозы 70 годов.

Пути решения проблем

Существуют два пути разрешения энергетической проблемы – экстенсивный и интенсивный путь.

Экстенсивный путь – это увеличение добычи углеводородного сырья и рост энергопотребления. Китай и Англия уже достигли предела добычи собственных энергоносителей с перспективой сокращения их количества. Недостаток энергоресурсов вынуждает многие страны искать технологии, позволяющие их рациональное использование.

Интенсивный путь – уменьшение энергозатрат на единицу продукции.

Энергетический кризис привел к перестройке структуры экономики, к внедрению инновационных энергосберегающих технологий и это позволило уменьшить последствия энергетического кризиса. Если сберечь тонну энергоносителя, то его цена будет в 3 или 4 раза меньше, чем добытая тонна. Уже к завершению 20 века США и Германия уменьшили энергоемкость производства в 2,5 раза.

Например:

По сравнению с металлургией энергоемкость в машиностроении уменьшилась практически в 10 раз.

Все энергоемкие производства развитые страны переводили в страны третьего мира. Энергосбережение сэкономило 20% энергоресурсов на единицу ВВП.

Повышение эффективности потребления энергии связано с внедрением современных технологических процессов. Инновационные технологии очень капиталоемкие, но это перспективный путь развития - затраты в 3 раза меньше расходов на увеличение добычи энергоресурсов.

Удивительно, но некоторые государства, например Китай, Россия, Индия, Украина по-прежнему используют устаревшие технологии в металлургии и химической промышленности. Они даже стремятся развивать эти чрезвычайно энергоемкие производства.

Увеличение энергопотребления в этих государствах связано с недостатком средств на внедрение современных технологий и с небольшим повышением уровня жизни населения. Глобальная энергетическая проблема и ее решение связано с расходом энергии на изготовление продукции. В настоящее время недостатка энергетических ресурсов на планете нет. Для некоторых регионов и государств сохраняется характерная проблема обеспечения энергоресурсами.

Глобальная сырьевая проблема, пути решения

  • Организовывать и финансировать геологоразведочные и геолого-поисковые экспедиции. При успешном завершении поиска запасы минерального сырья увеличатся. Например, в послевоенный период разведанное количество запасов бокситов увеличилось почти в 36 раз, а добыча только в 10 раз. В этот период почти в 7 раз увеличились разведанные запасы медных руд с увеличением добычи только в 3 раза. Разведано множество месторождений нерудных ископаемых – калийных солей, фосфоритов, каменной соли. Современная техника позволяет проводить поиск и разведку месторождений не только на материке, но на дне морей и Мирового океана.
  • Внедрение энергосберегающих технологий, уменьшение материалоемкости изделий и энергоемкости процессов изготовления конечной продукции.
  • Добиваться полной и безотходной переработки минеральных ресурсов.
  • Использование в промышленности вторичного сырья - важного элемента рационального использования природных ресурсов.
  • Применение искусственных материалов для замены природного сырья, например керамики, стекловолокна, углеволокна и других материалов.

Несмотря на огромные природные запасы полезных ископаемых – руды, нефти, газа, экономика России, развивающаяся экстенсивным путем, стала испытывать определенные кризисные явления. Постепенно богатые месторождения полезных ископаемых истощаются, растет себестоимость их добычи, наблюдается постепенное снижение запасов углеводородного и минерального сырья государства.