Гиалуроновая кислота является главным элементом. Гиалуроновая кислота: что это такое и как она работает. Физические и химические свойства

Гиалуроновая кислота (гиалуронат) – это один из важнейших компонентов внеклеточных структур тканей, вещество, входящее в состав большинства биологических жидкостей и выполняющее целый ряд жизненно необходимых функций в человеческом организме. В теле молодого человека, весящего 70 кг, присутствует около 15 г данного соединения. При этом более трети его запасов ежедневно подвергается преобразованию (синтезируется или расщепляется).

Доказано, что с течением времени концентрация гиалуроновой кислоты в организме снижается. Так, например, в органах и тканях человека, достигшего 50-летнего возраста, присутствует на 30–40 % меньше этого соединения, чем в теле 17-летнего подростка. По этой причине современные диетологи рекомендуют каждому человеку, достигшему возраста 33–35 лет, увеличивать поступление этого вещества извне, то есть с пищевыми продуктами.

Впервые гиалуронат был выделен учеными К. Мейером и Д. Палмером из стекловидного тела коровьего глаза в 1934 году. Химическая структура этого соединения была определена значительно позже – во второй половине минувшего века. Что же касается медико-биологических свойств гиалуроновой кислоты, то их изучение продолжается до сих пор.

Биологические функции гиалуроната

Гиалуроновая кислота – это жизненно необходимое человеку вещество, выполняющее широкий спектр биохимических функций. На сегодняшний день доказано, что указанное соединение:

  • является важнейшим составным компонентом эпителиальных, соединительных и нервных тканей, биологических жидкостей;
  • повышает интенсивность натриевого, калиевого, магниевого обмена в клетках;
  • поддерживает оптимальный жидкостный баланс во всех тканях человеческого тела;
  • предотвращает преждевременное старение;
  • ускоряет процессы регенерации за счет активизации секретирующей способности фибробластов (клеток, из которых состоят соединительные ткани);
  • ускоряет процессы сращивания костных тканей при переломах и других повреждениях;
  • придает вязкую консистенцию синовиальной жидкости;
  • создает оптимальные условия для пролиферации (деления) и миграции клеток;
  • улучшает микроциркуляцию крови;
  • повышает скорость транспортировки полезных веществ по организму;
  • защищает органы и ткани от травмирования при сдавливании;
  • обеспечивает защиту кожных покровов от негативного действия прямых солнечных лучей;
  • стимулирует процессы, отвечающие за синтез эластина и коллагена;
  • оказывает выраженное противовоспалительное действие;
  • входит в число компонентов, из которых состоят суставные хрящи, обеспечивает их нормальное функционирование;
  • устраняет последствия внутренней интоксикации;
  • защищает организм от микробов (активизирует бактерицидные факторы на раневой поверхности и на кожных покровах);
  • изменяет активность лимфоцитов, укрепляя тем самым иммунитет человека;
  • является антиоксидантом;
  • способствует удалению из организма погибших клеточных структур и продуктов жизнедеятельности клеток;
  • предотвращает развитие целого ряда офтальмологических заболеваний, является структурным элементом стекловидного тела человеческого глаза и входит в состав других элементов зрительного аппарата, способствует прохождению световых лучей к глазной сетчатке, не допуская при этом их искажения;
  • препятствует появлению нарушений в работе суставов;
  • является модулятором контуров лица и тела;
  • обладает способностью удерживать влагу в кожных покровах, придает коже упругость, повышает ее устойчивость к влиянию неблагоприятных факторов и препятствует появлению возрастных и мимических морщин;
  • оказывает благотворное влияние на работу репродуктивной системы;
  • участвует в процессах внутриутробного развития и роста плода во время беременности.

Стоит отметить, что указанное соединение играет значимую роль и в процессе оплодотворения яйцеклетки. В норме ооцит, вышедший в периоде овуляции из яичника, покрыт двумя защитными оболочками (zona pellucida и corona radiata), содержащими большое количество гиалуроната. Оплодотворение его возможно только в том случае, если целостность этих оболочек не нарушена. При разрушении защитных слоев яйцеклетка теряет способность к оплодотворению сперматозоидами и погибает. Другими словами, недостаточное поступление гиалуроната в организм может стать причиной женского бесплодия.

В каких продуктах содержится гиалуроновая кислота?

В молодости организм человека способен синтезировать гиалуроновую кислоту и самостоятельно удовлетворять свою потребность в этом веществе. Однако с возрастом выработка данного соединения снижается, а его дефицит начинает оказывать отрицательное влияние на состояние кожи, суставов, на работу внутренних органов и систем. Одним из способов устранения неприятной симптоматики, сопровождающей нехватку гиалуроната, является включение в меню продуктов, богатых этим веществом или соединениями, стимулирующими его выработку.

Основным пищевым источником гиалуроновой кислоты считаются мясные продукты. При этом наибольшее количество этого вещества присутствует в тех сортах мяса (и блюдах, приготовленных на их основе), которые содержат достаточное количество суставов, сухожилий, хрящей и кожи. Так, например, восполнить утраченные запасы гиалуроната можно, регулярно включая в меню:

  • наваристые мясные бульоны;
  • отварное или тушеное мясо на кости;
  • холодец, приготовленный на основе индейки, свинины, курицы или говядины;
  • любые блюда, содержащие желатин (желе, мармелад, зефир и пр.).

Стоит отметить, что богатым источником гиалуроновой кислоты является и растительная пища. В частности, повышенные концентрации этого вещества были обнаружены в бобах сои, соевом молоке и овощах, содержащих большое количество крахмала. В конце XX века вещества, стимулирующие выработку гиалуроната, были обнаружены в кожице красного винограда. В результате в число растительных продуктов, позволяющих восполнить запасы этого уникального соединения в теле человека, были включены красные вина и натуральный виноградный сок.

Значительное количество гиалуроновой кислоты содержится и в некоторых лекарственных травах. В частности, богатым источником этого вещества признаны листья и плоды репейника, которые используют для приготовления полезных и вкусных травяных чаев.

Какие факторы влияют на синтез и усвоение гиалуроната в организме?

Существует несколько факторов, способных оказывать как положительное, так и отрицательное влияние на процессы выработки и усвоения гиалуроновой кислоты. Так, например, синтез этого соединения и его усвояемость значительно повышаются при одновременном употреблении продуктов, обогащенных аскорбиновой кислотой и рутином. По этой причине диетологи рекомендуют лицам, страдающим от недостатка гиалуроновой кислоты, как можно чаще включать в свой рацион следующие продукты и блюда:

  • зеленый чай;
  • цитрусовые фрукты (лучше всего – грейпфруты, апельсины и лимоны);
  • рябину;
  • некоторые ягоды (ежевику, черную смородину, малину);
  • грецкие орехи;
  • абрикосы;
  • черешню;
  • зелень (петрушку, кинзу, укроп);
  • все разновидности капусты;
  • листовой салат;
  • шиповник и приготовленные на его основе настои;
  • томаты.

Одновременно с этим существуют факторы, которые могут существенно замедлять процессы выработки и всасывания гиалуроновой кислоты. Именно они и являются основными причинами развития дефицита этого вещества в организме.

Недостаток гиалуроновой кислоты и его последствия

Основными причинами формирования дефицита гиалуроновой кислоты в организме становятся:

  • курение;
  • злоупотребление спиртными напитками, имеющими повышенную крепость, употребление красного вина в дозах, превышающих допустимые (более 140 мл в течение дня);
  • недостаточное поступление витамина C, рутина и других полезных веществ;
  • чрезмерно долгое пребывание в солярии, под воздействием прямых солнечных лучей, отказ от использования солнцезащитных кремов;
  • возрастное уменьшение концентрации данного вещества в тканях человеческого тела.

Недостаток этого соединения может повлечь за собой широкий ряд неблагоприятных последствий. В частности, признаками формирования дефицита гиалуроната могут явиться:

  • ухудшение общего самочувствия, усталость, безразличие к происходящим событиям;
  • ослабление иммунных сил организма, частое возникновение простудных заболеваний;
  • обезвоживание, дряблость, чрезмерная сухость кожи;
  • изменение контуров лица и тела в худшую сторону;
  • развитие дерматологических заболеваний;
  • ухудшение зрения и появление других нарушений в работе зрительного аппарата;
  • раннее появление морщин и иных признаков старения организма;
  • развитие болезней суставов и возникновение других патологий в работе опорно-двигательного аппарата;
  • длительное заживление ран, медленное срастание костных тканей при переломах;
  • появление признаков интоксикации организма;
  • неспособность зачать ребенка в течение длительного времени;
  • появление нарушений во внутриутробном развитии плода, замедление его роста.

При обнаружении подобных симптомов необходимо пересмотреть свой рацион и обогатить его продуктами, богатыми гиалуроновой кислотой и веществами, активизирующими ее синтез. Помимо этого, необходимо отказаться от вредных привычек и максимально оградиться от действия факторов, отрицательно сказывающихся на выработке этого незаменимого соединения.

Гиалуронат, или гиалуроновая кислота, свойства и пользу которой рекламируют косметические компании, является основным средством, применяемым для омоложения кожи лица. Широкое распространение средств с ее содержанием заставляет многих задумываться о том, полезны ли процедуры и домашний уход с помощью таких препаратов, или они вредны для лица. Чтобы решить этот вопрос, нужно понять, что такое гиалуроновая кислота и как правильно выбрать косметику, чтобы получить прекрасный результат.

Гиалуроновая кислота в организме человека

Полисахарид — это химический термин, который подразумевает, что в состав вещества входят молекулы глюкозы. В гиалуронате они соединены в длинные цепочки. Молекула гиалуроновой кислоты может содержать до 25 000 одинаковых звеньев. При взаимодействии с особым белком (аггреканом) она приобретает способность связывать и удерживать в тканях молекулы воды.

Гиалуроновая кислота в организме человека входит в состав соединительной ткани: хрящей, сухожилий и т.п. Много гиалуроната содержится в стекловидном теле глаза, в синовиальной жидкости, где она обеспечивает вязкость среды. Вместе с волокнами коллагена и эластина вещество входит в структуру кожи, обеспечивая ее упругость и участвуя в процессах регенерации. Откуда берется гиалуроновая кислота, если ее еще не начали вводить во время косметических процедур?

Гиалуронат вырабатывается самим организмом. В теле взрослого человека общая масса этого вещества достигает 15 г. Но естественный синтез его замедляется после 25-летнего возраста, и процессы распада гиалуроната преобладают над его производством в организме. С течением времени доля кислоты в кожных покровах снижается, а ткани обезвоживаются. В дерме происходят изменения, которые внешне выглядят как морщины. Из-за снижения количества гиалуроната в других тканях возрастные изменения затрагивают весь организм.

Растения не вырабатывают гиалуроновую кислоту. Поэтому никакая диета с приемом пищи, содержащей соевые бобы, клетчатку или другие вещества, не влияет на выработку собственной кислоты в организме. Для омоложения кожи нужна та или иная косметическая процедура с применением препаратов гиалуроната.

Гиалуроновая кислота в косметологии

Применение гиалуроновой кислоты в косметологии основано на ее способности удерживать воду. Исследования ученых доказали, что сочетание гиалуроната и янтарной кислоты активизирует обмен веществ в тканях кожи, способствуя восстановлению ее клеток. Восстанавливающее действие гиалуроновой кислоты на кожу лица приводит не только к визуальному улучшению состояния кожи, но и обновляет ее на клеточном уровне. Чтобы убедиться в этом, нужно разобраться, как действует гиалуроновая кислота на кожу лица и зачем нужна та или иная процедура.

В качестве составляющей межклеточного вещества гиалуронат способствует движению лимфоцитов и фибробластов к местам повреждения кожи. При воспалительных явлениях, в случае мелкой травмы эти клетки обеспечивают борьбу с микроорганизмами и заживление тканей. Процессы регенерации состоят и в образовании большого количества волокон эластина и коллагена, которые и сохраняют упругость кожи.

В косметических кабинетах посетителям предлагают услуги, которые основаны на инъекционном введении препаратов гиалуроновой кислоты в кожные покровы. Результат всех процедур сводится к увеличению объема истонченной кожи, заполнению морщин, устранению кожных дефектов (рубцов от прыщей). Различают следующие виды использования гиалуроновой кислоты:

  • биоревитализация — для лечения угрей, послеродовых растяжек, восстановления кожи лица при возрастных изменениях;
  • мезотерапия — исправление дефектов кожи лица;
  • при редермализации в состав препаратов в качестве действующего вещества входят и гиалуроновая, и янтарная кислоты;
  • для биорепарации применяют филлеры с пептидами и витаминами;
  • заключается в восстановлении овала лица при помощи гиалуроновой кислоты;
  • контурная пластика применяется для изменения формы и объема отдельных частей лица (например, для ).

Кроме салонных методик существуют средства косметики, в состав которых входит низкомолекулярная гиалуроновая кислота. Они предназначены для ухода за кожей в домашних условиях. Чтобы получился желаемый эффект, а кожа была упругой и бархатистой, при использовании сыворотки или крема нужно соблюдать инструкцию к препарату.

Видео о плюсах и минусах использования гиалуроновой кислоты для лица

Когда нельзя применять средства с гиалуроновой кислотой?

От использования гиалуроновой кислоты и средств с ее содержанием иногда приходится отказываться. Это связано с особенностями получения вещества. Несмотря на современные способы очистки гиалуроновой кислоты, она способна вызвать аллергические реакции. Способность межклеточной среды к проведению полезных веществ и лимфоцитов внутри кожи может сыграть отрицательную роль и послужить способом перемещения инфекционных агентов или даже измененных клеток (когда в организме есть опухоли). Побочные эффекты могут возникнуть и от индивидуальной реакции организма, поэтому получать консультацию и проводить омолаживающее лечение лучше в крупных салонах, где работают сертифицированные специалисты.

При следующих состояниях:

  • острых инфекционных и воспалительных процессах;
  • сниженной свертываемости крови или при приеме антикоагулянтов;
  • аутоиммунных заболеваниях;
  • индивидуальной непереносимости препаратов с гиалуронатом;
  • аллергии;
  • беременности и кормлении грудью.

Нежелательно начинать процедуры, если менее 30 дней назад проводился пилинг лица (лазерный или химический).

Какая она бывает?

Производители выпускают множество препаратов с обозначениями, которые не всегда понятны потребителям их продукции.

Чтобы правильно выбрать средство для домашнего пользования или салонного ухода, надо иметь в виду, что виды гиалуроновой кислоты могут различаться по длине молекулы:

  1. Для лечения артрита, глазных болезней медики применяют среднемолекулярное вещество. Такая гиалуронка — скорее лекарство, чем косметика. Ее введение в организм стимулирует фибробласты и помогает организму начать продуцировать собственный гиалуронат.
  2. Низкомолекулярная гиалуроновая кислота состоит из коротких отрезков и входит в состав средств для домашнего применения: тоников или сывороток, эмульсий, кремов и т.д. Небольшие размеры частиц помогают им проникать в глубину дермы. С помощью лекарств на основе этой формы гиалуроната производят и лечение сложных заболеваний кожи (трофических язв, псориаза и т.п.). Недостатком является малый срок депонирования кислотного вещества: оно сохраняется в тканях всего 7-8 суток.
  3. В салонных процедурах чаще используется высокомолекулярная гиалуроновая кислота, состоящая из длинных полимерных цепочек. Она способствует гидратации кожи и удержанию влаги в ней. Введенная внутрь дермы, гиалуроновая кислота для лица более полезна, чем предыдущая, т.к. растворы на ее основе имеют большую вязкость и могут сохраняться в коже до 2 недель. После этого начинаются процессы ее деградации, и процедуры приходится повторять через 6-10 месяцев.

Различают разновидности гиалуроната и по способу производства. При выборе средства стоит поинтересоваться, из чего изготовлена гиалуронка. В настоящее время все реже применяется вещество, полученное из животных материалов (пупочных канатиков, петушиных гребешков, рыбы и т.п.). Его не удавалось качественно очистить от примесей белка, поэтому инъекции могли вызвать аллергическую реакцию или отторжение.

В настоящее время производители косметики выпускают биосинтезированный гиалуронат. Его получают благодаря деятельности микроорганизмов. с этим видом гиалуронки считаются гипоалергенными.

Система гиалуроновых кислот, применяемых в косметологии, включает в себя и такие виды, как:

  • стабилизированная, или нативная — биосинтезированные молекулы, прошедшие процесс сшивки, которые меньше подвергаются деградации в тканях человека;
  • нестабилизированная, т.е. лишенная этих качеств.

Из-за особенностей каждого типа косметология применяет их по-разному. Нестабилизированная гиалуроновая кислота для лица чаще находит применение для общего улучшения состояния кожи (в или при биоревитализации), для увлажняющих процедур. Стабилизированную форму применяют, чтобы моделировать контуры лица, восполнять объемы тканей на отдельных участках (для заполнения морщин и выравнивания складок). Сфера использования того или иного препарата зависит от степени стабилизации молекул: менее стабилизированные препараты рекомендуются для коррекции мелких морщин, более вязкие, с высокой стабилизацией — для выравнивания складок и провалов.

Потребительские свойства гиалуроновой кислоты разных видов различаются незначительно. Основное отличие — это срок ее сохранения под кожей до начала деградации и наличие или отсутствие вероятности возникновения побочных эффектов.

Препараты и средства с гиалуроновой кислотой

Производство гиалуроновой кислоты для лица и препаратов на ее основе осуществляется в разных странах. Несомненным лидером по выпуску косметики с омолаживающим эффектом является Корея. Именно корейская косметика подарила гиалуроновой кислоте нынешнюю популярность.

Гиалуроновая кислота от морщин применяется в виде наружных и внутренних средств. Среди препаратов можно выделить следующие разновидности:

  1. Крем или сыворотку могут применять девушки до 25-летнего возраста. Гиалуроновая кислота для лица в виде наружного средства, дополненного маслами растительного происхождения, может защищать кожу от пересыхания, но практически неспособна исправить дефекты дермы. Наружные средства могут помочь и от прыщей.
  2. Тем, кому за 30, омоложение гиалуроновой кислотой следует проводить при помощи инъекционных методов. При проведении процедуры косметолог введет филлер туда, где требуется заполнение морщин: гиалуроновой кислотой можно выровнять даже резкие носогубные, межбровные или лобные складки. Собирая и удерживая влагу, препарат разбухнет и разгладит кожу.
  3. Можно приобрести препарат и для приема внутрь. Пить гиалуроновую кислоту нужно в соответствии с инструкцией к средству: чаще всего по 1 таблетке или капсуле в день. Это лучшая методика для тех, кто боится уколов или не доверяет и другим орепроцедурам. Эффект от приема лекарств придется ждать 2-3 месяца, постоянно принимая средство.

Современная косметология применяет гиалуронат не только для кожи лица. Существует корейская косметика и (маски, сыворотки и пр.). Они действуют на волосы по той же схеме, по которой происходит увлажнение кожи лица гиалуроновой кислотой, т.е. создают защитную пленку, удерживая влагу внутри волоса. Широко применяются и специальные средства для мужчин (для увеличения полового органа).

Мифы о гиалуроновой кислоте

Из-за относительной новизны восстанавливающей косметики с гиалуронатом вокруг способов омоложения ходит большое количество разных мифов и домыслов. Часть их имеет под собой основания, но большинство являются неправдой. Один из таких — миф о том, что гиалуроновая кислота в косметологии является аналогом ботокса.

На самом деле, ботокс — это препарат, содержащий токсин бактерии ботулизма. Вещество расслабляет и парализует мышечные ткани, разглаживая морщины. Принцип действия гиалуроновой кислоты иной: вязкая жидкость просто заполняет пространство под кожей, выталкивая часть ее наружу. Качественные филлеры нетоксичны и абсолютно безопасны, т.к. гиалуронка распадается под воздействием ферментов человека до простых сахаров.

Женщины считают, что лучше не применять в зимние холода увлажняющие маски и кремы с содержанием гиалуроновой кислоты (для лица). Но именно зимой кожа подвергается воздействию сухого воздуха и на улице, и в помещении. Увлажняющие препараты необходимы, чтобы уберечь ее от шелушения и обезвоживания. Используя увлажняющее средство, нужно знать, что гиалуроновая кислота на кожу лица наносится за 30-40 минут до выхода на улицу. Средство успеет впитаться в дерму и предохранит ее от пересыхания.

Другой миф повествует о том, что из-за применения гиалуроната может повыситься внутриглазное давление. Это убеждение совершенно не обосновано, т.к. препараты не влияют на процессы в организме. Гиалуроновая кислота, функции которой состоят в накоплении и сохранении влаги, уже содержится внутри глаза и попасть туда из крема или филлера не может.

Многих интересует и вопрос о том, может ли быть аллергия на гиалуроновую кислоту. При выборе качественных препаратов, произведенных на основе биосинтезированной гиалуроновой кислоты, риск аллергических реакций сведен к минимуму. При этом не играет роли, какой тип вещества использовал производитель в своих средствах ухода: и низкомолекулярная, и высокомолекулярная гиалуронка имеют одинаковые побочные эффекты и противопоказания. Состав гиалуроновой кислоты не меняется, можно изменить только длину ее молекул. При применении кремов и сывороток аллергия чаще возникает из-за содержания сопутствующих веществ растительного и животного происхождения (масел, отдушек или экстрактов).

У потребителей вызывает сомнения и способность молекул проникать в дерму при нанесении препарата на кожу. Гиалуроновая кислота, которая применяется для изготовления таких средств ухода, обладает небольшими размерами молекул и беспрепятственно проникает в межклеточное пространство. Различие с инъекциями состоит в глубине проникновения: наружные средства способны увлажнить только верхние слои дермы. Поэтому их применение ограничено возрастом женщины.

Среди изобилия средств и методик их применения легко выбрать наилучший способ, подходящий каждой женщине. При выборе какого-то из них следует учесть и свой возраст, и противопоказания, которые могут способствовать аллергической реакции или вызвать другие неприятности. Перед проведением процедуры лучше всего посоветоваться с опытным специалистом-косметологом.

Гиалуроновая кислота!О ней много говорят, ее включают в состав рецептур новых средств по уходу за кожей. Все производители косметики утверждают, что используют лучшие типы гиалуроновой кислоты в своих продуктах. Но что такое гиалуроновая кислота, что она делает, как она работает и какой ее тип считается лучшим?

Гиалуроновая кислота (ГК) – самый важный фактор гидратации кожи. Эта молекула образует трехмерную сеть, которая действует как губка и буквально улавливает воду вокруг и внутри своих складок.

Кроме того, ГК используется организмом в качестве смазки в суставах, из нее в основном состоит ушная раковина, она же один из структурных полимеров стекловидного тела глаза. ГК способна стимулировать или ингибировать воспаление, способствует заживлению ран и восстановлению кожного покрова. Она – важная составляющая межклеточного вещества буквально всей соединительной ткани человеческого организма.

В коже ГК находится главным образом в базальной мембране эпидермиса и дерме, поддерживая пространство между клетками, увлажняя и облегчая прохождение питательных веществ.

В организме женщины весом 60 кг содержится около 13 г гиалуроновой кислоты, 4,3 г из этого количества перерабатываются и обновляются каждый день.

Однако прежде чем обсуждать, как работает ГК и что она может сделать для кожи, было бы неплохо сначала представить короткое досье на это вещество для лучшего понимания способа его действия.

Гиалуроновая кислота 101

Гиалуронан, или гиалуроновая кислота, – это натуральный полимер, то есть большая молекула, состоящая из множества повторяющихся маленьких молекул-«субъединиц».

В случае гиалуроновой кислоты этой субъединицей является дисахарид D-глюкуроновая кислота и N-ацетил-D-глюкозамин, связанные вместе.

Длина молекулы ГК может составлять от 2 до 25 тыс. дисахаридов. Молекулярная масса этого природного полимера колеблется от 800 до 2 000 000 Дальтон (Да), при этом средняя молекулярная масса ГК составляет 3 МДа в суставах и около 2 МДа в коже.

Организм непрерывно синтезирует и разрушает ГК (как упоминалось выше, полная замена ГК в организме происходит примерно каждые три дня). По мере постепенной деградации больших молекул ГК образуются фрагменты самой разной молекулярной массы. Набор этих фрагментов – от 800 Да до 2 MДа – присутствует в любой момент времени в нормальных тканях.

По размерам молекулы ГК делятся на разные фракции.

  • Очень высокая молекулярная масса: 3–20 MДа.
  • Высокая молекулярная масса: ~ 2 MДа.
  • Средняя молекулярная масса: ~ 1 MДа.
  • Низкая молекулярная масса: ~ 300 кДа.
  • Очень низкая молекулярная масса: ~ 60 кДа.
  • Олигомеры: от 800 Да до10 кДа.

Внешний вид и биологические эффекты

Очевидно, что молекулы, молекулярная масса которых может различаться в 12 500 раз, выглядят и ведут себя в биологических системах совершенно по-разному, оказывая разные биологические эффекты. Это более подробно показано в многочисленных исследованиях, проведенных в последние годы.

Обычно говорят, что ГК может поглотить воды в 1000 раз больше ее собственного веса. Однако это относится только к высокомолекулярной ГК, а та, что имеет более низкую молекулярную массу, очевидно, способна поглощать гораздо меньше воды.

Поэтому на практике, если взять 1% высокомолекулярной ГК в воде, то можно получить довольно вязкую жидкость или жидкий гель. Низкомолекулярная ГК в той же концентрации будет гораздо менее вязкой жидкостью или совсем водянистым гелем, тогда как олигомер будет таким же жидким, как вода. Излишне говорить, что ГК с молекулярной массой 20 MДа будет в этом случае очень густым гелем.

Вы можете задаться вопросом, зачем столько информации о размерах молекул и внешнем виде геля. Ответ довольно интересен. ГК с молекулярной массой 3–20 MДа, то есть высокомолекулярная ГК, – это тот тип ГК, который обнаруживается при целлюлите. Это аномально большой размер молекул ГА, за счет чего происходит прочное удержание воды в подкожной жировой клетчатке, что в свою очередь способствует проявлению видимых признаков целлюлита.

Поэтому присутствие в тканях ГК со слишком высокой молекулярной массой нежелательно – это признак патологического процесса. С другой стороны, присутствие в тканях слишком большого числа ГК-фрагментов, то есть слишком большого количества олигомеров или даже ГК с молекулярной массой 20 кДа, также нежелательно, поскольку они, как известно, стимулируют воспаление. Однако даже воспаление в некоторых ситуациях имеет право на существование, и иногда это необходимо (например, при заживлении ран).

Все остальные молекулярные массы (50 кДа – 2 МДа) кажутся нейтральными или полезными, причем 2 МДа считается наиболее «нормальной» (если так можно выразиться) и препятствует воспалению.

Таким образом, мы можем утверждать, что единственный действительно «плохой» тип ГК – это ГК с чрезвычайно высокой молекулярной массой, которая также способствует фиброзу.

Диета, образ жизни и гиалуроновая кислота

Предполагается, что диета, богатая овощами (магний) и фруктами (аскорбиновая кислота), помогает повысить естественный синтез ГК в организме. Также некоторые продукты богаты ГК или ее предшественниками. В качестве примера можно привести костный бульон, мясные субпродукты и суставной хрящ.

Гиалуронан можно также принимать внутрь в виде пищевой добавки, и он действительно «достигает» кожи и суставов, помогая увеличить их гидратацию, дольше сохранить молодость и поддержать здоровье. Это похоже на пероральный прием гидролизованного коллагена, что также помогает отсрочить старение кожи, сохранить упругость и эластичность связок и сухожилий.

Ультрафиолетовое излучение уменьшает содержание ГК в коже, что приводит к ее сухости и воспалению. Обеспечив кожу достаточным количеством ГА летом, в том числе «изнутри», мы можем быть уверены, что она сможет оставаться увлажненной и защищенной от солнечных лучей.

Нет никакой специфической пищи, которая обладала бы доказанной способностью увеличивать собственный синтез ГК в организме, но ежедневное употребление определенного количества питьевой воды будет способствовать гидратации, поскольку молекула воды не менее важна для этого, чем гиалуроновая кислота, ведь без воды гиалуронан абсолютно бесполезен. В идеале необходимо выпивать два литра воды в день. Таким образом, для улучшения увлажнения кожи и получения омолаживающего эффекта целесообразно комбинировать оральное применение ГК в виде БАД и употребление достаточного количества воды. Для максимального результата можно дополнительно использовать качественную сыворотку, гель или крем, содержащие ГК.

Кожная абсорбция ГК из косметических рецептур

Поскольку ГК стимулирует репарацию и увлажнение кожи, а кожа производит ее все меньше и меньше по мере старения, само собой разумеется, хочется добавить немного ГК в кожу в виде косметической сыворотки, крема или геля.

Понятно, что ГК с большой молекулярной массой не сможет даже проникнуть в эпидермис, в то время как все, что ниже 300 кДа, проникает в дерму и даже подкожно-жировую клетчатку. Чем ниже молекулярная масса, тем глубже ГК может проникать в кожу.

Однако не все так просто. Как мы уже упоминали выше, нужно понимать, для чего мы используем в своей рецептуре ГК с более низким молекулярным весом. «Проталкивая» ГК с молекулярным весом 20 кДа в кожу, мы вовсе не решаем всех проблем кожи, поскольку для нее это может оказаться как полезным, так и раздражающим воздействием. В случае использования ГК с чрезвычайно низкой молекулярной массой все осложняется еще больше.

Однако в большинстве исследовательских работ показано, что молекулы ГК с молекулярной массой где-то между 50 и 300 кДа хорошо проникают в кожу и оказывают на нее благотворное влияние. Мой личный опыт тоже говорит о том, что это лучший для использования диапазон молекулярных масс.

ГК с молекулярной массой 1 MДа может гидратировать сам эпидермис, не проникая дальше, в то время как молекула с молекулярной массой 2MДа просто сидит на поверхности эпидермиса и больше никуда не идет. С другой стороны, я обнаружил, что ГК с молекулярной массой 10 кДа не так полезна и в высоких концентрациях может раздражать кожу, что подтверждается данными, приведенными в научной литературе.

Столь разная абсорбционная способность ГК, зависящая от ее молекулярной массы, является причиной того, что все больше косметических компаний в настоящее время в рецептурах используют ГК разного молекулярного веса.

Молекулы ГК также могут быть линейными или сшитыми. Линейная молекула – это стандартная ГК, встречающаяся в организме человека и в природе. Сшитая ГК представляет собой изобретение человека, это более стабильная форма ГК с более высокой гидратирующей способностью. Но, к сожалению, сшитая ГК обладает меньшей способностью проникать в кожу, поскольку молекула «более толстая» и не может легко пересечь эпидермис.

Сшитая ГК используется в качестве филлера в мезотерапии, но сегодня ее также можно встретить в составе некоторых антивозрастных кремов.

Сыворотки, гели и кремы

Достаточно легко получить косметическую сыворотку или гель, используя ГК и воду. Однако кремы – это другое дело. Здесь ГК может сильно увеличить нестабильность эмульсионной системы. Поэтому большинство продуктов с ГК на рынке – это гели и сыворотки, которые легче получить.

Многие представленные на рынке косметические средства с ГК содержат около 0,1% этого вещества, то есть 1 часть ГК и 999 частей воды и некоторых других ингредиентов. Однако более концентрированные продукты могут содержать до 2% ГК. Более высокие концентрации нецелесообразны, поскольку крем или гель становятся слишком густыми и неудобными.

Гиалуроновая кислота в настоящее время – один из самых популярных и важных ингредиентов для борьбы со старением кожи и в уходе за лицом. Ее также можно встретить в некоторых средствах для ухода за телом. К сожалению, если тип и концентрация ГК специально не упоминаются на упаковке косметического средства, очень сложно понять, что именно и в каких концентрациях в нем используется, но это относится ко всем ингредиентам косметических рецептур.

С другой стороны, некоторые продукты для ухода за кожей включают в себя активные вещества, которые повышают собственный синтез ГК в коже. Это дает несколько отсроченный результат, но обходит проблему абсорбции ГК, поскольку «собственная» ГК синтезируется внутри кожи. Другие активные вещества, используемые в косметике, могут ингибировать в человеческом организме действие разрушающих ГК ферментов – гиалуронидаз (большинство полифенолов обладает такой активностью). Это продлевает срок полезного использования ГК в коже и подавляет ее раннюю или чрезмерную деградацию.

Каково происхождение ГК для косметики?

Когда-то давно в косметике использовали ГК животного происхождения, получаемую из свиных ушей или петушиных гребней. Я помню, что первая ГК, которую мы купили для использования в наших продуктах в 2002 году, была получена из поросят.

Сегодня ГК производится путем бактериальной ферментации, что позволяет получить стандартный размер молекул – 2 MДa. Затем ее «разрезают» либо ферментами, либо гидролизом и получают молекулы меньшего размера. В организме человека происходит то же самое – ГК с молекулярной массой 2 MДа разрезается на более «мелкие кусочки» ферментами, называемыми гиалуронидазами.

Гиалуронидаза и целлюлит

Иногда, чтобы разрушить ГК с чрезмерно высокой молекулярной массой, о которой мы упоминали выше, врачи вводят в ткани гиалуронидазу.

Одно из таких применений гиалуронидазы – временное сокращение признаков целлюлита. Я использую слово «временное», потому что человеческий организм может восстановить молекулярную массу только что синтезированной ГК до 20 MДа всего за несколько дней.

Таким образом, долгосрочное решение проблемы целлюлита не может быть достигнуто инъекциями гиалуронидазы. Это должны быть меры, в первую очередь направленные на снижение удержания воды в тканях и уменьшение синтеза ГК с молекулярной массой 20 MДa. Но это история для другой статьи…

Заключение

По мере старения в организме человека синтезируется все меньше и меньше ГК, в связи с чем необходимо защитить уже имеющуюся ГК и увеличить ее содержание в коже.

Это можно сделать, избегая чрезмерного воздействия солнца; с помощью диеты, богатой овощами, травами, субпродуктами; выпивая достаточное количество воды; используя хорошие косметические средства для ухода за кожей на основе ГК с молекулами разных молекулярных масс, в идеале – от 50 до 300 кДа.

Биологически активные добавки с гиалуроновой кислотой также помогают, поскольку действительно оказывают благотворное влияние на кожу (и суставы), помогая увлажнять и питать организм «изнутри».

Гиалуроновая кислота – это поистине волшебное вещество, примечательное, в первую очередь, тем, что она вырабатывается непосредственно человеческим организмом. Во многих источниках, например, в Википедии, в различных лабораториях и медицинских центрах и просто в отзывах женщин разного возраста встречаются несхожие друг с другом описания гиалуронки и ее свойств.

Итак, прежде чем разобраться, что такое гиалуроновая кислота, следует заострить внимание на том, из чего состоит человеческий наружный покров. Кожа в медицинском понимании – это защитник от солнечных и ультрафиолетовых лучей, от механических внешних воздействий. Однако не все так просто. Оптимальное ее состояние помогают поддерживать три составляющие внутри кожного покрова:

  1. эластин;
  2. коллаген;
  3. гиалуроновая кислота.

Эластин и коллаген оказывают прямое влияние на подтянутость и упругость кожи и ее глубокого слоя – дермы. Для организма человека значение этих веществ очень велико, но оно было незаметным, если бы не гиалуроновая кислота, которая представляет своего рода водный резервуар, находящийся внутри кожного покрова. Организм человека способен сам синтезировать гиалуронку в нужных количествах из необходимых веществ.

Гиалуроновая кислота намагничивает на себя воду, ее молекулы притягивают влагу и делают кожу чистой, влажной изнутри. Жидкость защищает наружный покров от сухости, от раздражений , сыпей, от пигментных пятен и солнца. В дерме жидкость удерживается в больших количествах благодаря гиалуронке.

Итак, а теперь вернемся к вопросу о том, что это такое – гиалуроновая кислота в организме человека. Это чрезвычайно сложный мукополисахарид . Его структура настолько непроста, что расщепить и выделить отдельные элементы очень трудно. Тем не менее ученые уже нашли способ создавать гиалуроновую кислоту искусственно, как бы копируя человеческую. Состав ее разнообразен – туда входят молекулы и частицы различных веществ и химических соединений. Как следствием этих составляющих выступают великолепные свойства гиалуронки в коже лица.

Однако стоит заметить, что, с медицинской точки зрения, это вещество, которое содержится не только в коже лица. Имеется она и в суставах, в слюне человека, в роговице глаза. Функции там выполняются все те же – максимальное увлажнение соединительных тканей, защита от внешних воздействий, от пересушивания и дефицита воды.

Гиалуроновую кислоту обнаружили в кожном покрове довольно давно – в 1930-х годах . С этого времени ученые постоянно занимались исследованием ее свойств и функций в лабораториях, а также возможностью воссоздать данное вещество искусственным путем . Сейчас во всех рекламах кремов и гелей гиалуроновую кислоту маркетологи преподносят как эликсир молодости, однако, чтобы добиться видимых результатов и улучшения качества кожного покрова, необходимо непременно посещать косметолога, в домашних условиях применение гиалуроновой кислоты может и не вызвать желаемого эффекта.

О чудесных свойствах гиалуронки знает сегодня, наверное, каждая женщина. Помогает гиалуроновая кислота от морщин, от нежелательных трещинок и складок, предотвращает преждевременное старение. Но нужно сказать, что очень действенно для состояния кожи будет уделять больше времени себе – сбалансированно питаться, заниматься спортом, например, плаванием и т. д.

Гиалуронка используется повсеместно в медицинских и косметологических центрах как средство не только омоложения, но и очищения кожи, избавления от ссадин, гематом, прыщей. Дело в том, что данное вещество входит в состав различных сывороток, кремов и гелей. Наряду с этим средством, широко используется и искусственный коллаген, который призван разгладить и подтянуть кожу.

Гиалуронка животного естественного происхождения может проявить у любой женщины массу аллергических реакций, что только ухудшит состояние кожи лица. Куда лучше для косметологического использования подходит гиалуроновая кислота, созданная искусственно, лабораторным методом.

Любой крем, состоящий, например, из коллагена, требуется просто нанести тонким слоем на кожу лица для получения результата. Использование гиалуроновой кислоты основывается на том, что она должна непосредственным образом взаимодействовать с молекулами воды. Гиалуроновая кислота также наносится на кожу одинаковым слоем, но перед нанесением лицо нужно обязательно увлажнить, чтобы гиалуронке было откуда брать влагу и действовать.

Применение гиалуроновой кислоты без предварительного увлажнения может вызвать обратный эффект – повреждение кожи, ее чрезмерную сухость.

Очень действенным способом, который помогает избавиться от морщин и складок, является введение гиалуроновой кислоты инъекционно внутрь под кожу. Так как вещество состоит из сложных структур, его использование на деле не так-то просто. Гиалуроновая кислота в виде уколов предполагает, конечно же, наблюдение врача-косметолога, его полезные советы.

Процедура введения под кожу инъекций проходит довольно болезненно, особенно в первый раз, несмотря на то, что укол делается обычной тонкой иглой. Более того, можно не ждать, что положительный эффект появится сразу же: в течение семи дней гиалуроновая кислота будет оказывать влияние на кожный покров изнутри, а настоящего видимого преображения можно достичь, делая регулярные процедуры у косметолога. Так что в этом случае красота требует не только жертв, но и времени.

Применение

Вопреки распространенному мнению, гиалуронка используется в косметологии не только как омолаживающий эликсир для женщин в возрасте после 40 лет. Вещество отлично проявляет себя и при взаимодействии с молодой кожей – оно удаляет прыщи, точки, пятна, рассасывает синяки, прекращает зуд и шелушения. А также используется гиалуроновая кислота для пластики губ, то есть в эстетической медицине. Такие разнообразные сферы применения гиалуроновой кислоты связаны с происхождением – человеческий организм сам ее синтезирует, именно поэтому она так эффективно воздействует на кожу, ведь оно не является чужеродным веществом для организма.

Итак, гиалуроновая кислота широко применяется в следующих областях:

  1. биоревитализация;
  2. гиалуронопластика;
  3. увеличение губ;
  4. мезатерапия;

Практически все сферы использования гиалуроновой кислоты предполагают уколы внутрь кожного покрова, поэтому выдержать процедуру – задача совсем не из легких. Однако, к примеру, такой способ, проходит без инъекций. Дело в том, что при ней крем или гель, содержащий гиалуроновую кислоту, наносится равномерно на лицо, а затем на нее воздействует ультразвук, который неминуемо вгоняет вещество в поры кожи, таким образом, уколы в этом случае не нужны.

Все эти указанные области относятся к индустрии косметологии, омоложения и красоты. Однако гиалуроновая кислота используется и в медицине, не относящейся к созданию нового молодого образа, из-за чего спектр ее действия еще больше расширяется.

А также существует и пищевая добавка Гиалурон. Люди, воспользовавшиеся ею, отмечают, что кожа начала преображаться, разглаживаться. Дело в том, что Гиалурон как раз помогает восполнить запасы гиалуроновой кислоты под кожей, которые с возрастом начинают неминуемо уменьшаться.

Итак, так как кислота гиалуроновая в естественной среде находится в суставах человека, роговице глаза, в соединительных тканях под кожным покровом, то она эффективно может быть использована в травматологии, офтальмологии, в лечении суставов и всего опорно-двигательного аппарата.

Также существует и пищевая добавка Гиалурон. Люди, воспользовавшиеся Гиалуроном, отмечают, что кожа начала преображаться, разглаживаться. Дело в том, что Гиалурон как раз помогает восполнить запасы гиалуроновой кислоты под кожей, которые с возрастом начинают неминуемо уменьшаться.

Виды вещества

Существует три фракции, или типа согласно молекулярному строю. Они по-разному воздействуют на организм и кожу человека, поэтому очень важно подобрать для каждого из нарушений подходящую гиалуроновую кислоту.

Итак, три фракции вещества выглядят следующим образом:

  1. низкомолекулярная;
  2. среднемолекулярная;
  3. высокомолекулярная.

Первая призвана использоваться в случаях различных ожогов, сильных сыпей, псориаза, она действует на кожу рассасывающим образом.

Среднемолекулярная предотвращает миграции клеток, благодаря чему используется в основном в офтальмологии.

Наконец, третья фракция гиалуронки способна удерживать и притягивать огромное количество молекул воды. Следовательно, ее возможности очень велики и эффективны в плане воздействия на внешний покров человека. Именно эта фракция разглаживает кожу, уничтожает постепенно морщины и трещины, которые появляются при старении и замедлении процессов, происходящих в дерме. При ее использовании кожа заметно улучшает свой вид, становится чистой, приобретает здоровый блеск, делается постоянно увлажненной изнутри. Постоянное присутствие влаги дает свои плоды – появляется гладкость, проходит шелушение, кожные покровы никогда не бывают сухими при регулярных косметологических процедурах.

Эффект от применения

Гиалуроновая кислота – это настоящий источник молодости кожи. Тем не менее не следует ожидать, что при первом же нанесении геля или крема лицо преобразится до неузнаваемости. В этом деле нужно терпение и выдержка, частые сеансы у косметолога, покупка различных препаратов, содержащих гиалуронку.

А также стоит заметить, что все процессы, происходящие под кожей, для каждого человека уникальны, поэтому действие гиалуроновой кислоты носит индивидуальный характер. В данном случае основываться на отзывах других женщин можно только для ознакомления, необязательно переносить все на себя. Каждый человек воспринимает и чувствует препарат по-разному, строго индивидуально.

Тем не менее эстетическая медицина выделяет несколько положительных эффектов, которые в любом случае проявят себя при регулярных применениях гиалуроновой кислоты:

  1. постоянная увлажненность, отсутствие сухости;
  2. ровный кожный рельеф, уничтожение бороздок, трещин;
  3. будет возвращен естественный цвет, поскольку одним из следствий использования гиалуроновой кислоты является уничтожение пигментных пятен;
  4. лицо будет, без сомнения, подтягиваться, соответственно, морщины уберутся, возвратится былая упругость;
  5. происходит очищение дермы изнутри, следовательно, минимален риск высыпаний, прыщей.

Как уже было сказано, гиалуроновая кислота содержится во многих сыворотках, кремах российских и иностранных производителей. Перед применением любого препарата обязательно рекомендуется прочесть внимательно инструкцию. Многие кремы, содержащие гиалуроновую кислоту, подразделяются на дневные и ночные. Это неспроста, поэтому для достижения эффекта желательно следовать рекомендациям производителей.

Регулярность нанесения крема или сыворотки на кожу зависит от всевозможных факторов, в том числе от возраста женщины или от степени проблем с кожей. Переусердствовать в этом плане тоже нельзя, поскольку это может отрицательно сказаться на состоянии наружного покрова. Лучше всего записываться на прием к косметологам и получать советы из их уст, поскольку использование препаратов во многих случаях носит индивидуальный характер.

Видео

Поделитесь записью

1

Дан краткий исторический очерк об открытии и комплексном изучении гиалуроновых кислот. В сравнительном плане проведена систематизация данных научной литературы по особенностям химического строения, физико-химических свойств, гистологической и цитологической принадлежности, функций и метаболизма гиалуроновых кислот у организмов различных таксономических групп. Выявлены особенности ферментного состава, обеспечивающие синтез и деградацию биополимера у микроорганизмов и в клетках тканей млекопитающих. Проанализированы традиционные технологии извлечения из животного сырья и способы его получения на основе культур Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus и Bacillus subtilis. Обоснована научно-техническая разработка инновационных биотехнологий гиалуроновых кислот различной молекулярной массы и перспективы их производственной реализации. Представлены сведения о применении продукции на их основе в различных сферах современной жизни.

гиалуроновая кислота

технологии микробного синтеза

биотехнология

бактерии

1. Белодед А. В. Микробиологический синтез и деградация гиалуроновой кислоты бактериями р. Streptococcus: Автореф. дис. канд. биол. наук: МГУПБ - М., 2008. - 23 с.

2. Бычков С.М., Колесников М.Ф. Способ получения гиалуроновой кислоты //A. с № 219752 СССР, 1968. - Бюл. № 19. - С. 90.

3. Забненкова О.В. Внутридермальные филлеры на основе гиалуроновой кислоты. Показания к применению, возможные комбинации // Пластическая хирургия и косметология: научно-практический журнал, 2010. - № 1 - С. 101-115. URL: http://www.pscj.ru/upload/iblock/569/11.pdf (дата обращения: 24.11.2016)

4. Костина Г., Радаева И. Использование гиалуроновой кислоты в медицине и косметологии // Косметика и медицина, 1999. - № 2-3. - С. 53-57.

5. Лупына Т. П., Волошина Е. С. Микробиологический способ получения гиалуроновой кислоты и перспективы её использования в фармацевтике. Национальный университет пищевых технологий, Украина. - 2014. - С. 4.

6. Препараты Princess filler и Princess volume в коррекции возрастных изменений лица и атрофических рубцов // Инъекционные методы в косметологии, 2013. - №2 /http://corneal.ru/events/publications/43/ (дата обращения:24.11.2016)

7. Португалова B.B., Ерзикян К.Л. Гиалуроновая кислота и ее роль в жизнедеятельности организмов // Успехи соврем. биол., 1986. - Т. 101, № 3. - С. 344-358.

8. Радаева И.Ф., Костина Г.А., Змиевский A.B. Гиалуроновая кислота: биологическая роль, строение, синтез, выделение, очистка и применение // Прикл. биохим. микробиол., 1997. - Т. 33, №2. - С. 133-137.

9. Ряшенцев В.Ю., Никольский С.Ф., Вайнермен Е.С. и др. Способ получения гиалуроновой кислоты // Патент № 2017751 РФ, 1994. - Бюл. № 15. - С. 75-76.

10. Толстых П.И., Стекольников Л.И., Рыльцев В.В. и др. Лекарственные препараты животного происхождения для наружного применения // Хим.-фарм. журн., 1991. - Т. 25, № 4. - С. 83-87

11. Филлеры: что это такое [Электронный ресурс] // Стоматология & косметология http://24stoma.ru/filleri.html (дата обращения: 24.11.2016 г.)

12. Abatangelo G., Martinelli M., Vecchia P. Healing of hyaluronic acid-enriched wounds:histological observations // J. Surg. Res., 1983. - V. 35, № 5. - P. 410-416.

13. Ahmet Tezel & Clenn H. Fredrickon Дермальные филлеры на основе гиалуроновой кислоты: взгляд с позиции науки [Калифорнийский университет, Санта-Барбара, США] [Электронный ресурс] // SKIN AESTHETIC http://estetika.uz/upload/files/da25b536d87b2edf853c5bc5d10f2968.pdf (дата обращения: 24.11.2016)

14. Carter G.R. Pasteurellosis: Pasteurella multocida and Pasteurella hemolytica. // Adv. Vet. Sci., 1967. - V. 11. - P. 321-379.

15. DeAngelis P.L., Jing W., Graves M.V., Burbank D.E., van Etten J.L. Hyaluronan synthase оf chlorella virus PBCV-1 // Science, 1997. - V. 278. - P. 1800-1803.

16. DeAngelis P.L., Papaconstantinou J., Weigel P.H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria // J. Biol. Chem, 1993. - V. 268. - P. 14568-14571.

17. Frost G.I., Csoka Т., Stern R. The hyaluronidases: a chemical, biological and clinical overview // Trends Glycosci. Glycotech., 1996. - V. 8. - P. 419-434.

18. Graves M.V., Burbank D.E., Roth R., Heuser J., DeAngelis P.L., van Etten J.L. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae // Virology, 1999. - V. 257. - P.15-23.

19. Karlstam В., Vincent J., Johansson В., Bryno C. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes // Prep. Biochem., 1991. - V. 21. - P. 237-256.

20. Kendall F.E., Heidelberger M., Dawson M.H. A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic Streptococcus. // J. Biol. Chem., 1937. - V. 118. - P. 61-69.

21. Kim J.H., Yoo S.J., Oh D.K., Kweon Y.G. et al. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. // Enzyme Microb. Technol., 1996. - V. 19. - P. 440-445.

22. Lansing M., Lellig S., Mausolf A., Martini I., Crescenzi F., Oregon M., Prehm P. Hyaluronate synthase: cloning and sequencing of the gene from Streptococcus sp. // Biochem. J., 1993. -V. 289. - P. 179-184.

23. Linker A., Meyer K. Production of Unsaturated Uronides by Bacterial Hyaluronidases //Nature, 1954. - V. 174. - P. 1192-1194.

24. Matsubara C, Kajiwara M., Akasaka H., Haze S. Carbon-13 nuclear magnetic resonance studies on the biosynthesis of hyaluronic acid // Chem. Pharm. Bull., 1991. - V. 39. - P. 2446-2448.

25. Meyer K. Highly viscous sodium hyaluronate // J. Biol. Chem., 1948. - V. 176. - № 2. - P. 993-997.

26. Meyer K. Hyaluronidases // The Enzymes. - V. 5. / ed. Boyer P.D. - New York: Academic Press, 1971. - P . 307-320.

27. Meyer K., Palmer J. The polysaccharide of the vitreous humor // J. Biol. Chem., 1934. -V. 107. - P. 629-634.

28. Mortimer E.A., Vastine E.L. Production of Capsular Polysaccharide (Hyaluronic Acid)by L Colonies of Group A Streptococci. // J. Bacteriol., 1967. - V. 94, № 1. - P. 268-271.

29. Prehm P. Hyaluronan. // Biopolymers: biology, chemistry, biotechnology, applications. -V. 5: Polysaccharides I. Polysaccharides from prokaryotes. / eds. Vandamme E.J., DeBaets S.,Steinbuchel A. - Weinheim: Wiley-VCH, 2000. - P. 379-404.

30. Prehm P. Synthesis of hyaluronate in differentiated teratocarcinoma cells: characterization of the synthase. // Biochem. J., 1983. - V. 211. - P. 181-189.

31. Roseman S., Moses F.E., Ludowieg J., Dorfman A. The biosynthesis of hyaluronic acidby group A Streptococcus. Utilization of l-C14-glucose // J. Biol. Chem., 1953. - V. 203. - P.213-225.

32. Scott J.E., Cummings C, Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer // Biochem. J., 1991. - V.274. - P. 699-705.

33. Shimada Е., Matsumura G.J. Molecular Weight of Hyaluronic Acid from Rabbit Skin //J. Biochem., 1977. - V. 81. - № l. - P. 79-91.

34. Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: an information-rich system // Eur. J. Cell Biol., 2006. - V. 85. - P. 699-715.

35. Sugahara K., Schwartz N.B., Dorfman A. Biosynthesis of Hyaluronic Acid by Streptococcus // J. Biol. Chem., 1979. - V. 254, № 14. - P. 6252-6261.

36. Weigel P.H., Hascall V.C., Tammi M. Hyaluronan Synthases // J. Biol. Chem., 1997. - V. 272, № 22. - P. 13997-14000.

37. Widner В., Behr R., Von Dollen S., Tang M., Ней Т., Sloma A., Sternberg D., DeAngelis P.L., Weigel P.H., Brown S. Hyaluronic Acid Production in Bacillus subtilis // Appl. Environ. Microbiol., 2005. - V. 71, № 7. - P. 3747-3752.

A DESCRIPTION OF DIFFERENT METHODS USED TO OBTAIN HYALURONIC ACID

Savoskin O. V. 1 Semyonova E. F. 1 Rashevskaya E. Yu. 1 Polyakova A. A. 1 Grybkova E. A. 1 Agabalaeva K. O. 1 Moiseeva I. Ya. 1

1 Penza State University

Abstract:

The article gives a brief historical outline of the discovery and comprehensive study of hyaluronic acids. We compare and systematize scientific papers focusing on the specific features of functions, metabolism, chemical constitution, physical, chemical, histological and cytological properties of hyaluronic acids in organisms belonging to different taxonomic groups. We also reveal the specific features of enzyme composition that ensure the synthesis and degradation of biopolymers in microorganisms and mammals’ tissue cells. In addition, we analyze traditional extraction technologies used with animal-based raw materials and ways of obtaining them from Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus and Bacillus subtilis. Furthermore, we present the grounds for the scientific and technical development of innovative biotechnologies related to hyaluronic acids with different molecular weight and their production prospects. Finally, we give information about how hyaluronic acid-based goods are used in different spheres of modern life.

Keywords:

technologies of microbial synthesis

В последние годы медицина, фармацевтика и косметология далеко шагнули в вопросе использования высокомолекулярных соединений (ВМС), в качестве основных действующих, а также вспомогательных, корригирующих веществ и наполнителей. Одним из наиболее востребованных в медицине и косметологии ВМС на сегодняшний момент, является гиалуроновая кислота (ГК), которая нашла свое применения в хирургии, как заменитель синовиальной жидкости в суставах в качестве смазывающего и хондропротекторного компонента; дерматологии, в качестве ремоделирующего агента при коррекции возрастных деформаций кожи лица, особенно кожи вокруг глаз; гинекологии, в качестве противоспаечного средства при внутривлагалищных сращениях. Таким образом, спектр применения гиалуроновой кислоты весьма широк; он постоянно пополняется, что приводит к повышению спроса на данный вид биополимера, а, следовательно, интересу к альтернативным источникам его получения.

1. История открытия гиалуроновой кислоты

В 1934 г. в журнале Journal of Biological Chemistry была опубликована статья Карла Маера и Джона Палмера, в которой упоминался необычный полисахарид, выделенный из стекловидного тела бычьего глаза (от греч. hyalos — стекловидный и англ. uronic acid - уроновая кислота), достаточно высокой молекулярной массы 450 г/моль и не содержащий сульфатных групп . Дальнейшие исследования показали, что полисахарид представлен фрагментами дисахарида, который состоит из D-глюкуроновой кислоты и N-ацетилировананного глюкозоамина.

Данные о принадлежности биополимера только структурам организмов млекопитающих опровергли, когда в 1937 г. Кендал и Хейдельбергер заявили о выделении полисахарида идентичного гиалуронану из культуральной жидкости гемолитического стрептококка. Идентичность выделенного биополимера подтвердилась ими же позже после установления структуры полисахарида в 60-е годы . В 1954 г. в журнале Nature руководитель лаборатории Meyer опубликовал структурную формулу фрагмента дисахарида, продукта расщепления стрептококковой гиалуронатлиазой .

Научный интерес к гиалуроновой кислоте, ее получению, выделению и применению все больше увеличивался. К настоящему времени опубликовано более 15000 статей в зарубежных и отечественных журналах. Результатом исследований было получение достоверных данных о выделении гиалуронана из различных органов млекопитающих, а также из культур различных клеток (гемолитический стрептококк, стрептомицеты, коринебактерии). Некоторые данные имели промышленное значение, например, экстракция гиалуроновой кислоты из гребней кур используется и сейчас. За полвека увеличился и спектр применения гиалуронана (хирургия, косметология, травматология и ортопедия, дерматология и др.), а также были созданы новейшие лекарственные формы на основе его полимерной структуры . Все это не было возможно без установления биологической роли биополимера, который, как оказалось, служил компонентом клеточного матрикса, необходимого для нормального осуществления метаболических процессов пролиферации и дифференциации тканей. Так был изучен процесс метаболизма гиалуронана в организме человека. Стало известно, что в день распадается и синтезируется около 5 г гиалуроновой кислоты, а ее содержание в теле человека составляет примерно 0,007%, что составляет около 15 г у женщины массой 70 кг .

В 1953 г. Роземан, Мозес и Дорфман опубликовали работы, где был указан способ получения гиалуронана, его осаждения и выделения в свободном виде на основе культур гемолитического стрептококка. В дальнейшем их методы выделения и осаждения были усовершенствованы Цифонелли и Маедо, что позволило повысить выход и чистоту продукта . Механизм образования гиалуронана в бактериях, в том числе стрептококков, был выявлен позже, когда был исследован ферментный состав микроорганизмов, способных к синтезу гиалуроновой кислоты. В 1959 г. было доказано существование специфических пептидов гиалуронатсинтетаз, которые осуществляют синтез полисахарида в мембранах бактерий .

В 1992 г. американские ученые заявили о клонировании гена, отвечающего за синтез гиалуронатсинтетазы, и передаче его штамму кишечной палочки. Однако активного фермента получить не смогли. ДеАнгелис в 2002 г. сообщил об успешном выделении оперона гиалуронатсинтетазы и экспрессии его в микроорганизм. Это был первый случай клонирования глюкозоаминогликансинтетаз в мировой практике .

В настоящее время в мире проводятся исследования механизмов действия гиалуроновых кислот, их роли в организме человека и альтернативных путей использования. Однако, особенно актуальными являются вопросы микробного синтеза гиалуронана, что подтверждает цена за килограмм очищенного продукта, составляющая около 700000 т. руб. (импортируемый продукт на основе животного сырья). Так, за последние 20 лет в мире было выдано более 50 патентов, что свидетельствует о высоком интересе к рассматриваемой проблеме.

2. Химическое строение и физические свойства гиалуроновой кислоты

Около 20 лет с момента первой публикации об открытии животного полисахарида гиалуроновой кислоты (1934 г.) понадобилось лаборатории Meyer, для установления точного химического строения гиалуроновой кислоты. Гиалуроновая кислота, гиалуронат или гиалуронан - (C14H21NO11)n - органическое соединение, относящееся к группе несульфатированных глюкозоаминогликанов (рис. 1). Наличие многочисленных сульфатированных групп у родственных глюкозоаминогликанов является причиной многочисленной изомерии, чего не наблюдается у гиалуроновой кислоты, которая всегда химически идентична, в независимости от методов и источников получения. Молекула гиалуроновой кислоты построена из повторяющихся фрагментов D-глюкуроновой кислоты и N-ацетил-D-глюкозоамина, соединенных β-(1-3)гликозидной связью. Основы фрагментов сахаров - это глюкопиранозное кольцо с различными заместителями (ацетамидная группа, гидроксильные и карбоксильные функциональные группы).

Рис. 1. Химическая формула гиалуроновой кислоты

Для молекулы гиалуроновой кислоты характерно образование большого количества водородных связей как внутри молекулы, так и между соседними углеводными остатками, находящимися на значительном друг от друга расстоянии, а в водном растворе даже между соседними молекулами через карбоксил и ацетамидную группу. Имеет кислую реакцию среды ввиду наличия непротонированной карбоксильной группы. Кислотные свойства гиалуроната позволяют получать растворимые в воде соли с щелочными металлами. Гиалуроновая кислота - это анионный линейный полисахарид с различной молекулярной массой 105-107Да. Молекулярная масса зависит от способа получения, причем, ввиду отсутствия изомерии, получаемый гиалуронат всегда химически идентичен стандартному.

Растворы гиалуроновой кислоты 1-4% образуют псевдогели. В водной среде сила кислотности карбоксильной группы (pK) составляет порядка 3-4, поэтому, для сохранения электронейтральности в растворе, молекулу окружают положительно заряженные катионы металлов, Na+, K+, Мg2+ и Ca2+, что приводит к формированию прочной гелевой структуры с большим содержанием воды. С тяжелыми металлами и красителями дает нерастворимые в воде комплексы. Кроме того, гиалуронат специфически реагирует с белками и в результате дает нам сложные гелеобразные комплексы, нередко выпадающие в осадок .

В водном растворе гиалуроновая кислота имеет достаточно большие значения продольного размера полисахаридной цепи - примерно 1 нм, поэтому, находясь в организме млекопитающих, гиалуроновая кислота принимает наиболее компактную форму. Посредством рентгеноструктурного анализа, выяснено, что гиалуронат может формировать левую ординарную и двойную спирали, различные многонитевые плоские структуры, а также сверхспирализованные структуры с вариациями концентраций в различных частях цепи, формирующие плотную молекулярную сетку, что и составляет вторичную структуру полисахарида. Это, в основном, обусловливается образованием водородных связей, связыванием с катионами щелочных металлов и гидрофобными взаимодействиями. Третичная структура гиалуроновой кислоты - это сетка, обладающая высокими реологическими свойствами (домены отталкиваются друг от друга), способная поглощать значительное количество воды и электролитов, а также большие молекулы белков, однако точно определенного размера пор третичная структура не образует. Сети имеют весьма четкую упорядоченность, ввиду наличия электронных эффектов по функциональным группам и по заместителям. При этом молекула принимает наиболее энергетически выгодное положение, которое также зависит от ионного окружения .

3. Гиалуроновая кислота в природе, функции гиалуроната в зависимости от гистологической и цитологической принадлежности у различных организмов

Наличие гиалуронатсинтетаз и гиалуроновых кислот в капсулах вирусов и бактерий родов Streptococcus можно объяснить, как адаптативное эволюционное приспособление, которое бактерии и вирусы позаимствовали у высших животных, тем самым увеличив свою способность преодолевать иммунный ответ хозяина.

3.1 Гиалуроновая кислота в тканях млекопитающих

Гиалуронат - основной компонент межклеточного матрикса различных тканей млекопитающих, однако распределен неравномерно. Так, например, максимальная концентрация содержания гиалуроновой кислоты в теле человека наблюдается в синовиальной жидкости, пупочном канатике, стекловидном теле глаза и коже .

В коже глюкозоаминогликан содержится в интерстициальном пространстве и выполняет ряд функций: удерживает воду, тем самым поддерживает естественную эластичность и объём кожи, что так важно при воспалительных реакциях; участвует в процессах пролиферации и дифференциации кератиноцитов и иммунокомпетентных клеток, тем самым играет роль в поддержании нормального процесса роста и регенерации кожных покровов и осуществлении местного иммунитета, укрепляет волокна коллагена (рис. 2); служит естественным барьером, защищающим от действия свободных радикалов, болезнетворных агентов и химических веществ .

Рис. 2. Воздействие гиалуроновой кислоты на коллагеновые волокна.

При недостатке естественной гиалуроновой кислоты, например, при старении или заболеваниях кожи, развиваются дегенеративные нарушения: снижается местный иммунитет, ранозаживляющая способность, эластичность кожи, что ведёт к возникновению морщин. В хрящевой ткани ГК выполняет функцию структурного элемента матрикса, необходимого для связывания и удержания хондроитинсульфатпротеогликана для укрепления коллагенового каркаса хряща . В синовиальной жидкости гиалуронат обеспечивает смазку для подвижных частей сустава, уменьшая их износ. При воспалительных заболеваниях суставов (артритах), снижается количество гиалуроновой кислоты, уменьшается вязкость синовиальной жидкости, что ведет к ухудшению движения. Также гиалуроновая кислота играет важную роль в эмбриогенезе, является передатчиком сигналов клеточной подвижности.

Таким образом, функции гиалуроната весьма обширны, и по мере дальнейшего расширения сферы изучения ее свойств, будут открываться все новые факты о роли глюкозоаминогликана в организме человека и млекопитающих .

3.2 Гиалуроновая кислота как компонент капсул бактерий

4. Метаболизм гиалуроновой кислоты

Синтез гиалуроновой кислоты достаточно хорошо изучен. Для млекопитающих и бактерий родов Streptococcus и Pasteurella биохимия процесса принципиально не отличается. Для синтеза гиалуроновой кислоты необходимы компоненты полимера: глюкуроновая кислота и N-ацетилглюкозамин. Глюкуроновая кислота синтезируется посредством ряда ферментативных реакций из глюкозо-6-фосфата (рис. 3).

Рис. 3. Схема синтеза глюкозоаминогликанов

Глюкозо-6-фосфат под действием фермента α-фосфоглюкомутазы изомеризуется в глюкозо-1-фосфат. Далее фермент УДФ-глюкозопирофосфорилазы катализирует образование УДФ-глюкозы из уридиндифосфата и глюкозы. После происходит ферментзависимое окисление гидроксогрупп УДФ-глюкозы под действием фермента УДФ-глюкозодегидрогеназы. Результат - образование глюкуроновой кислоты.

N-ацетилглюкозамин синтезируется из фруктозо-6-фосфата. При биосинтезе аминосахара происходит перенос аминогруппы на фруктозо-6-фосфат. Донор аминогруппы - глютамин, фермент амидотранфераза. Результат - образование глюкозамина-6-фосфата, который изомеризируется мутазой в глюкозамин-1-фосфат, который подвергается ацетилированию при участии фермента ацетилтрансферазы в присутствии КoA до N-ацетилглюкозамин-1-фосфата, который необходимо активировать пирофосфорилазой до УДФ-N-ацетилглюкозамин-1-фосфата. Это энергозатратный процесс.

Последней стадией синтеза гиалуроновой кислоты будет осуществление гликозидтрансферазной реакции при помощи единственного фермента гиалуронатсинтетазы. Этот процесс также происходит с затратой энергии АТФ (на синтез 1 моля гиалуроната расходуется 2 моль АТФ) .

4.1. Гиалуронатсинтетазы: строение, функции, локализация, кинетические характеристики и механизмы катализа

Гиалуронатсинтетаза - металлопротеин молекулярной массы 49 кДа, фермент, требующий катионы металлов для координации с фосфатными группами (активации) и использующий глюкозидфосфаты в качестве субстратов. Является единственным в своем роде ферментом, катализирующим синтез гиалуроновой кислоты в организме млекопитающих и в клеточной стенке гемолитического стрептококка, а также у вируса PBCV-1 и бактерии Pasteurella multicida . Исследования, проведенные в 50-е годы, в лаборатории Meyer позволили установить характерные особенности фермента гиалуронатсинтетазы: функционирует при нейтральных значениях pH, для катализа требует активированные посредством конъюгации с уридиндифосфатом глюкуроновую кислоту и N-ацетилглюкозамин, а также присутствие катионов Mg2+ и Mn2+ для координирования фосфатных групп. Фермент проявляет высокую активность в присутствии кардиопина (находится в комплексе). Тип 1 был изучен в 1983-1998 г. Prehm и Asplund, характерен для гемолитического стрептококка млекопитающих: гиалуронатсинтетаза синтезирует гиалуроновую кислоту посредством присоединения углеродных остатков к восстанавливающему концу гиалуроната, при этом чередуются β(1-3) и (1-4)гликозидные связи .

4.2. Ферменты, осуществляющие деполимеризацию гиалуроновой кислоты

Катаболические реакции гиалуроновой кислоты основаны на ферментативном катализе посредством гиалуронатлитических ферментов. Гиалуронатлиазы были классифицированы в 1971 году в лаборатории Meyer . Концепция данной классификации предельно проста: фермент - катализируемая реакция - продукт реакции. В соответствии с данной классификацией выделяют три различных вида гиалуронидаз (гиалуронатлиаз):

Гиалуроноглюкозаминидазы (гиалуронидазы млекопитающих) - эндо-β-N-ацетилгексоаминидазы, расщепляют гиалуроновую кислоту до тетра- и гексасахаридов.

Гиалуроноглюкозаминидазы не облалают субстратной специфичностью, а также способны формировать поперечные сшивки между молекулами гиалуроната и хондроитинсульфата. Одной из дополнительной функции гиалуронидаз в организме млекопитающих является расщепление гиалуроната до дисахаров для получения энергии .

Гиалуронатлиазы (гиалуронидазы бактерий) - это эндо-β-ацетил-гексоаминоэлиминазы, гидролизирующие гиалуронат до 4,5-ненасыщенных дисахаров. Обладают высокой специфичностью к субстрату. У бактерий гиалуронидазы являются фактором патогенности, необходимой для инвазии и адгезии бактерий (для проникновения в организм млекопитающего).

5. Получение гиалуроновой кислоты

Все известные способы получения гиалуроновой кислоты можно разделить на две группы: физико-химический метод, который заключается в экстрагировании гиалуроната из тканей животного сырья млекопитающих, других позвоночных животных и птиц; и микробный метод получения ГК на основе бактерий-продуцентов.

5.1. Физико-химический способ: экстракция из животного сырья

Как было сказано ранее, гиалуроновая кислота встречается во многих тканях млекопитающих и птиц, и, в зависимости от гистологической принадлежности, содержание гиалуроновой кислоты и ее молекулярная масса могут варьировать. Кроме того, в различных тканях гиалуронат может находиться в комплексах с белками и родственными полисахаридами, что затрудняет его очистку с последующим выделением. В настоящее время для промышленного получения используют пупочные канатики новорожденных и гребни кур. Однако, кроме вышеперечисленных методов, описаны разнообразные способы выделения гиалуроната на основе стекловидного тела глаз крупного рогатого скота, синовиальной жидкости, суставных сумок, свиной кожи, плазмы крови и хрящевой ткани . При выделении биополимера прибегают к различным приёмам выделения: гомогенизация, экстракция, фракционное осаждение и т.п.

Любая процедура выделения гиалуронана включает предварительное разрушение органов и тканей, содержащих биополимер, и белково-углеводных комплексов. Разрушение достигается посредством методов измельчения и гомогенизации . После полученный гомогенат подвергают экстракции с использованием водно-органических растворителей. Ковалентно-связанные примеси пептидов удаляют методом ферментативного протеолиза, посредством обработки протеазами (папаином) или химической денатурацией (хлороформ, амиловый спирт с этанолом). Следующий этап — это адсорбция на активированном угле, посредством электродиализа. От примесей мукополисахаридов биополимер очищают методом осаждения хлоридом цетирпиридиния или посредством ионообменной хроматографии.

Наибольшее распространение, в силу доступности сырья и высокого содержания биополимера, получил метод выделения гиалуроновой кислоты из петушиных гребней. Экстракция производится смесью ацетона с хлороформом (удаление белка), водой, либо водно-спиртовой смесью (пропионовый, трет-бутиловый спирты) с последующей сорбцией на активированном угле, посредством электрофореза или на ионообменной смоле .

5.2. Микробный синтез, продуценты гиалуроновой кислоты

Экономически более выгодным является метод микробного синтеза гиалуроновой кислоты на основе бактериальных штаммов-продуцентов. Такой синтез при введении его в масштабы производства, будет иметь меньше издержек, таких как затраты на животное сырье и зависимость от сезонных поставок. И, напротив, производство гиалуронана на основе микробного синтеза позволит масштабировать производство и получить продукт высокой степени очистки, не содержащий примесей, а, следовательно, имеющий низкую аллергенность . С момента открытия способности бактерий к синтезу гиалуроновой кислоты, постоянно ведутся исследования возможности получения искомого полимера биотехнологическим путем, т. е. путем культивирования бактерий-продуцентов на питательных средах определенного состава в строго заданных условиях с последующим выделением целевого продукта. К продуцентам гиалуронана можно отнести капсулообразующие бактерии родов Streptococcus и Pasteurella . К штаммам-продуцентам предъявляется ряд требований:

Отсутствие патогенности и, особенно, гемолитической активности;

Способность к синтезу высокомолекулярной гиалуроновой кислоты;

Большие размеры капсул с высоким содержанием биополимера (капсулы при этом должны легко отделяться, желательно при экстракции);

Отсутствие гиалуронидазной активности, чтобы исключить потери целевого продукта;

Высокая способность к росту, при этом наиболее полное использование субстрата;

Сохранение стабильности физиолого-биохимических свойств.

Исследования в области поиска штамма, способного удовлетворить потребности в биополимере и соответствующего всем параметрам, привели к Streptococcus equi surbsp. equi. и Streptococcus equi surbsp. zooepidеmiсus .

Дикие типы стрептококков синтезируют внеклеточные белки, что снижает выход биополимера. Поэтому для получения воспроизводительных гиалуронидазанегативных, не гемолитических штаммов, проводили их модификацию посредством химического и УФ-индуцированного мутагенеза или ненаправленного мутагенеза с последующей селекцией. Генно-инженерные штаммы кишечных палочек, полученные на основе методов экспрессии оперонов, кодирующих синтез гиалуронатсинтетазы стрептококков на матрицу бактерий, в настоящее время не применяются, ввиду низких показателей выхода биополимера. Исключением можно считать генно-инженерный штамм Bacillus subtilis, показывающий высокие результаты выхода биополимера, при росте на сложных ферментированных средах .

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов Streptococcus zooepidemicus. Типичный состав синтетической питательной среды для бактерий рода Streptococcus, синтезирующих гиалуроновая кислоту, приведен ниже.

Источник углевода и энергии: глюкоза - 1000; аминокислоты: DL-аланин, L-аргинин, L-аспарагиновая кислота, L- цистин, L-цистеин, L-глютаминовая кислота, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, гидрокси-L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин, L-валин по 100; витамины: биотин - 0,2, фолиевая кислота - 0,8, никотинамид - 1, никотинамидадениндинуклеотид - 2,5, пантотенат кальция - 2, пиридоксаль — 1, пиридоксамин гидрохлорид - 1, рибофлавин — 2, тиамин гидрохлорид - 1; нуклеотиды: аденин - 20, гуанин гидрохлорид - 20, урацил - 20; соли органических и неорганических кислот: FeS04*7H20 - 5, Fe(N03)2*9H20 - 1, К2НР04 - 200, КН2Р04 - 1000, MgS04*7H20 - 700, MnS04 - 5, СаС12*6Н20 - 10, NaC2H302*3H2O - 4500, NaHC03 - 2500, NaH2P04*H20 - 3195, Na2HP04 - 7350.

Культивирование бактерий pода Streptococcus с целью получения ГК осуществляется, как правило, в периодических условиях. Питательную среду готовят однократно, растворяя необходимые компоненты среды в воде, после чего среду стерилизуют. Источник углерода стерилизуется отдельно. После засева за ходом ферментации следят по потреблению субстрата, росту концентрации клеток, образованию продукта (ГК), продуктов метаболизма, изменению рН среды. Максимальная концентрация ГК составляет приблизительно 5 г/л. Дальнейший рост содержания в среде ГК ведет к многократному возрастанию вязкости КЖ, резкому ухудшению массообменных характеристик процесса ферментации, трудностям при аэрировании и перемешивании. Концентрация ГК при периодической или периодической с подпитками по субстрату ферментации достигает заданного значения за 6 - 26 часа. Как правило, после выхода культуры в стационарную фазу процесс завершают. Клетки микроорганизмов инактивируют прогреванием при 60 - 80 °С. Биомассу отделяют одним из хорошо известных способов - флокуляцией, сепарированием, центрифугированием, фильтрованием. ГК из КЖ осаждают органическими растворителями или катионными ПАВ. Очистку проводят с помощью ультрафильтрационных методов, переосаждения или хроматографией.

Данные методы принципиально не отличаются от методов выделения ГК из животного сырья, описанных ранее. Например, в патенте на метод получения ГК описан следующий способ культивирования штамма-продуцента и выделения ГК. Ферментацию осуществляли в биореакторе на 3 л (коэффициент заполнения ферментера 0,5) на среде состава: 2,0 % глюкозы, 0,5 % ДЭ, 1,5 % пептона, 0,3 % КН2Р04, 0,2 % К2НР04, 0,011 % Na2S203, 0,01 % MgS04 * 7Н20, 0,002 % Na2S03, 0,001 % СоС12, 0,001 % MnCl2 и 0,5 % соевого масла; рН среды 7,0. Стерилизация среды осуществлялась глухим паром 120 °С в течение 15 мин. После охлаждения до комнатной температуры вносился инокулят культуры S. zooepidemicus штамм Ferm ВР-878 в количестве 0,1 л. Аэробное культивирование (расход воздуха 0,7 л/(л*мин) длилось 26 часов при постоянном термостатировании (35 °С) и перемешивании среды (300 об/мин). рН среды поддерживался постоянным на уровне 7,0. На 24-ом часу культивирования в асептических условиях вносилась подпитка по субстрату - 100 мл 50 % раствора глюкозы. Процесс завершали по прошествии 26 часов культивирования.

Для выделения ГК проводили следующие процедуры. К бактериальной культуре добавляли 3,2 л дистиллированной воды. После тщательного и длительного перемешивания биомассу отделяли центрифугированием. Супернатант концентрировали до 1,6 л на ультрафильтрационном половолоконном аппарате и проводили диализ против дистиллированной воды. В образовавшийся раствор вносили ацетат натрия до конечной концентрации 0,5 % и проводили осаждение 5 л этилового спирта. Осадок полисахаридов отделяли центрифугированием. Очистку ГК проводили, растворяя полученный осадок в дистиллированной воде (0,5 л) и добавляя 4 % водный раствор бромида цетилпиридиния. Осадок связанной с катионным ПАВ ГК отделяли и растворяли в 40 мл 0,3 М раствора хлорида натрия. Нерастворенную часть осадка отбраковывали. К раствору добавляли 120 мл этанола для осаждения ГК. Осадок отделяли и растворяли в дистиллированной воде, после чего проводили очистку на ионообменной смоле и повторное спиртоосаждение. Выход очищенного гиалуроната натрия с одной ферментации составлял 7,8 г. Содержание белка в препарате составляло менее 0,05 %. Молекулярная масса ГК равнялась 1,005 МДа .

Другие способы биотехнологического получения ГК, описанные в патентах, незначительно отличаются составом сред.

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов бактерий Bacillus subtilis. К способам получения гиалуроновой кислоты, относится метод биосинтеза ГК на основе генно-модифицированного штамма Bacillus subtilis, содержащий генетическую конструкцию, включающую промотор, функционально активный в указанной клетке, и кодирующую область, состоящую из нуклеотидной последовательности, кодирующей стрептококковую гиалуронансинтазу (hasA); последовательности, кодирующей UDP-глюкозо-6-дегидрогеназу Bacillus (tuaD) или аналогичный фермент стрептококкового происхождения (hasB), и последовательность, кодирующую бактериальную или стрептококковую UDP-глюкозопирофосфорилазу.

Метод включает культивирование клетки-хозяина Bacillus в условиях, подходящих для продуцирования гиалуроновой кислоты, при этом клетка-хозяин Bacillus содержит конструкцию нуклеиновой кислоты, включающую последовательность, кодирующую гиалуронансинтазу, функционально связанную с промоторной последовательностью, чужеродной в отношении последовательности, кодирующей гиалуронансинтазу; и извлечения гиалуроновой кислоты из среды культивирования .

6. Применение гиалуроновой кислоты

Гиалуроновая кислота - вещество с огромным спектром действия, и поистине удивительными свойствами. Спустя несколько лет после открытия гиалуроновой кислоты начинается разработка препаратов на основе глюкозоаминоликана для наружного применения в качестве средства, повышающего регенеративные и барьерные функции кожи. Однако, как известно, субстанция, изготовленная из животного сырья, требует тщательной очистки от примесей, что накладывает дополнительные издержки производства и отражается на цене конечного продукта . Действительно высокая себестоимость гиалуроновой кислоты долгое время препятствовала расширению спектра применения биополимера, однако постепенное увеличение знаний о свойствах полимера и внедрение биотехнологических методов на основе микробного синтеза, позволило существенно снизить себестоимость субстанции, подталкивает развитие разнообразных приложений, в которых находит применение гиалуроновой кислоты в областях медицины, пищевой, фармацевтической, космецевтической промышленности. Ведутся исследования по созданию лекарственных препаратов и БАД на основе гиалуроната с противовоспалительным, иммуномодулирующим и пролонгирующим действием, которые, возможно, в будущем можно будет применять в качестве основы терапии заболеваний в онкологии, оториноларингологии, хирургии, эндокринологии и многих других сферах человеческой деятельности .

6.1. Гиалуроновая кислота в медицине

Гиалуроновая кислота обладает антимикробным и регенерирующим действиями, поэтому на основе ее разработаны препараты для эффективной терапии поражений кожи. Созданные изначально как препараты против ожогов, данная группа активно применяется при терапии трофических нарушений кожного эпителия посттромботического генеза. Доказано, что низкомолекулярная гиалуроновая кислота (менее 10 кДа) оказывает ангиогенное действие, тем самым снижая образование спаек и разрастание соединительной ткани, так же улучшает микроциркуляцию и снижает эффекты воспаления .

Гиалуронат имеет свойства повышать активность интерферона, тем самым проявляя выраженное противовирусное действие. Была доказана высокая активность препаратов на основе гиалуроновой кислоты в отношении вируса герпеса и некоторых других. По данным некоторых источников высокомолекулярная гиалуроновая кислота является пролонгатором действия других БАВ, растворенных в ней Лекарственные вещества, за счет высокой вязкости гиалуроната, выделяются в ткани в течение длительного времени. Создается так называемое депо, из которого БАВ постепенно диффундирует в среду организма. Это позволяет увеличить терапевтическую широту, потенцировать в некоторых случаях фармакологический эффект, снизить побочные эффекты, а также расширить возможности применения других лекарственных веществ (стероидных препаратов, антибиотиков, пептидов, НПВС и т.д.) в комбинации с гиалуроновой кислотой. Широко применение гиалуроната в хирургии:

1. Офтальмологическая хирургия - гиалуронат натрия используется в качестве репаративного средства при оперативных вмешательствах на эндотелиальном слое роговицы (удаление катаракты).

2. Хирургическая травматология - при хирургических операциях с обширным сечением хрящевой ткани и осложненных артритах используется в качестве регенерирующего, смазывающего, противовоспалительного и анальгезирующего средства .

6.2. Гиалуроновая кислота в косметологии

Применение гиалуроната и его солей в косметологии основывается на способности гиалуронатсодержащих препаратов оказывать местное противовоспалительное, ранозаживляющее и иммуномодулирующее действие. Способность задерживать в межклеточном пространстве воду является основой механизма коррекции возрастных деформаций кожи. На данный момент в косметологической практике стали весьма популярны инъекции 1-3% водного раствора гиалуроновой кислоты для внутри- или подкожного введения. Введение гиалуроновой кислоты в эпителий в виде водного геля повышает эластичность и упругость тканей, тем самым придавая коже прежние качества и красоту . Однако широчайшее применение высокомолекулярный гиалуронат получил при изготовлении различных комбинированных кремов и гелей для наружного применения. Данный вид продукции имеет ту же направленность, что и инъекции - восстановить реологические свойства кожи, тем самым предотвратить образование морщин, прыщей и т.д. .

Гиалуроновая кислота обладает свойствами, которые делают ее крайне подходящей для использования в качестве дермального филлера: она способна связывать большое количество воды, присутствует в коже в естественных условиях и не склонна вызывать нежелательные реакции. Филлеры (Fill — от англ. — наполнять) - это инъекционные кожные наполнители, которые используются в косметологии для уменьшения глубины морщин, носогубных складок и складок в уголках рта . Филлеры также используются для придания дополнительного объема лицу в области скул, щек и губ В настоящее время широкое распространение получила группа ГК- филлеров семейства Surgiderm и Juvederm Ultra А. Surgiderm и Juvederm Ultra представляют собой однородные монофазные гели гиалуроновой кислоты неживотного происхождения. Они являются одними из наиболее пластичных материалов для инъекционной контурной пластики, что определяет не только легкость их введения, но и равномерное распределение в тканях, позволяет полностью исключить контурирование материла .

Современная серия препаратов на основе гиалуроновой кислоты PRINCESS®. «PRINCESS® Filler» представляет собой стерильный, биодеградируемый, вязкоэластичный, прозрачный, бесцветный, изотонический и гомогенизированный гелевый имплантат для интрадермальных инъекций. Содержащаяся в «PRINCESS® Filler» гиалуроновая кислота с поперечно-сшитой структурой продуцируется бактериями Streptococcus equi, представлена в виде раствора с концентрацией 23 мг/мл в физиологическом буфере .

Заключение

Гиалуроновая кислота - продукт животного происхождения, имеющий поистине удивительные свойства и высочайший спектр применения как сейчас, так и в перспективе дальнейшего ее использования. Поэтому совсем не удивительно, что ее свойства изучаются во всем мире.

В настоящее время исследуются процессы и механизмы действия гиалуроновой кислоты на ткани организма. Выдвигаются гипотезы относительно роли гиалуроната и родственных глюкозоаминогликанов в процессах пролиферации, дифференциации, миграции животных клеток в процессах иммунного ответа и эмбриогенеза, а также делаются попытки по установлению связи между молекулярной массой, степенью очистки и эффективностью препаратов.

Физико-химический способ, в виду своей экономической нерентабельности, постепенно уступает место биотехнологическому методу синтеза биополимера. Были проведены поиски продуцентов, соответствующих всем параметрам, а также различного рода испытания на предмет изучения метаболизма гиалуроновых кислот. Результатом исследования служило выявление прямая связи между способностью синтеза гиалуроновых кислот и наличием специфических ферментов гиалуронатсинтетаз.

В последние 20 лет оперон, кодирующий синтез гиалуронатсинтетаз, был выделен в чистом виде и неоднократно экспрессировался различным видам микроорганизмов с целью получения генно-модифицированных штаммов-продуцентов гиалуроновых кислот. Однако результата не могли добиться очень долгое время. Генно-модифицированные штаммы производили неактивную форму фермента, следовательно, способностью к продукции гиалуроновых кислот не обладали. Но недавно проведенные исследования по созданию генно-модифицированного штамма на основе бактерий Bacillus sibtilis показали хорошие результаты. Штаммы бактерий активно синтезировали гиалуронат высокой молекулярной массы, лишенной пептидных включений и связей с родственными мукополисахаридами.

Однако поиск штаммов-продуцентов сейчас продолжается. Проверяются возможности синтеза гиалуроната бактериями рода Streptomyces, и ведется разработка биотехнологии на их основе; кроме того, изучаются пути использования и внедрения гиалуроната во все сферы жизнедеятельности общества.

Библиографическая ссылка

Савоськин О. В., Семенова Е. Ф., Рашевская Е. Ю., Полякова А. А., Грибкова Е. А., Агабалаева К. О., Моисеева И. Я. ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ МЕТОДОВ ПОЛУЧЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ // Научное обозрение. Биологические науки. – 2017. – № 2. – С. 125-135;
URL: https://science-biology.ru/ru/article/view?id=1060 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»