Нетрадиционные возобновляемые источники электрической энергии. Нетрадиционные и возобновляемые источники энергии. д) Освещение зданий с помощью световых колодцев

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники, связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии Мирового океана), в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).

Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду. Хотя второй из этих тезисов ныне оспаривают не только отдельные географы и экологи, но и эксперты ООН, никто не отрицает, что они могли бы сыграть определенную роль в укреплении энергетической и экологической безопасности многих стран. Действительно, использование НВИЭ способствовало бы сбережению органических видов топлива и соответственно уменьшению поступления продуктов их сгорания в атмосферу, снижению объемов перевозок этих видов топлива (а следовательно, и транспортных расходов), рационализации топливно-энергетических балансов и др.

Однако на пути широкого использования НВИЭ существует и немало серьезных препятствий, прежде всего технико-экономического характера. Это крайнее непостоянство большинства таких источников энергии во времени и в пространстве, малая плотность потоков энергии, с чем непосредственно связаны высокая капиталоемкость строительства и себестоимость энергии, длительные сроки строительства, значительная степень разного рода рисков.

В целом баланс положительных и отрицательных факторов использования НВИЭ пока можно охарактеризовать как складывающийся с перевесом факторов второй группы. Показательно, что наибольший интерес к ним стали проявлять в период мирового энергетического кризиса 1970-х гг., когда цены на традиционные энергоносители резко поднялись. В 1981 г. в Найроби (Кения) состоялась специальная конференция ООН, на которой была принята мировая «Программа действий по использованию новых и возобновляемых источников энергии». Однако после того, как традиционные энергоносители снова подешевели, интерес к альтернативным значительно снизился. В настоящее время их доля в мировом топливно-энергетическом балансе не превышает 1 %. Только в очень немногих странах и регионах, где отсутствуют запасы органического топлива и ресурсы гидроэнергии, но имеются благоприятные условия для использования альтернативных источников энергии, доля их в таких балансах оказывается значительной. В остальных же странах и регионах они имеют сугубо местное значение, снабжая энергией мелких и территориально рассредоточенных потребителей.

Однако нельзя не учитывать и того, что за последние два десятилетия в мире был достигнут значительный прогресс в повышении экономичности использования нетрадиционных источников энергии. Так, существенно снизились затраты на строительство ветровых и солнечных электростанций, что повысило их конкурентоспособность даже в сравнении с обычными ТЭС, работающими на органическом топливе. В свою очередь, это стало возможным в результате разработки принципиально новых технологий использования альтернативных источников энергии. Большое значение имеет также проводимая в США, Японии, Китае, Индии, во многих странах Западной Европы политика стимулирования их использования. Она обычно предусматривает налоговые льготы на разработку оборудования, предоставление кредитов – государственных и частных, принятие специальных законодательных актов. Исходя из этого и прогнозы дальнейшего использования этих источников энергии относительно оптимистичны. Так, по оценке Мирового энергетического совета (МИРЭС), в 2020 г. даже при минимальном варианте прогноза они могут обеспечить выработку 540 млн тут (в нефтяном эквиваленте) и составить 3–4 % мирового потребления топлива и энергии. А при максимальном варианте эти показатели возрастут предположительно до 1350 млн тут и8-12 %.

Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 странах мира. Но сам характер использования этих источников во многом зависит от их природных особенностей.

Низко– и среднетемпературные «подземные котлы» (с температурой до 150 °C) используют в основном для обогрева и теплоснабжения: природную горячую воду по трубам подают к жилым, производственным и общественным зданиям, теплицам, оранжереям, плавательным бассейнам, водолечебницам и т. д. Термальные воды используют для прямого обогрева во многих странах зарубежной Европы (Франция, Италия, Венгрия, Румыния), Азии, (Япония, Китай), Америки (США, страны Центральной Америки), Океании (Новая Зеландия). Но, пожалуй, наиболее ярким примером такого рода может служить Исландия.

В этой стране, практически лишенной других источников энергии, пресные термальные воды начали осваивать еще в конце 1920-х гг., но первая в мире крупная система геотермального водоснабжения вступила тут в строй только в конце 1950-х гг. Горячую воду из почти ста глубоких скважин по специальной теплотрассе подают в столицу страны – Рейкьявик и соседние поселения. Ею отапливают жилые и общественные здания, промышленные предприятия, оранжереи и в особенности теплицы, полностью обеспечивающие потребности жителей в огурцах и помидорах и снабжающие их яблоками, дынями и даже бананами.

Высокотемпературные (более 150 °C) термальные источники, содержащие сухой или влажный пар, выгоднее всего использовать для приведения в движение турбин геотермальных электростанций (ГеоТЭС).

Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана, в местечке Лардерелло около Пизы, в 1913 г. Затем в Италии стали работать и другие небольшие ГеоТЭС. В 1920-х гг. начали строить ГеоТЭС в Японии, в 1950-х – в Новой Зеландии и Мексике, в 1960-х – в США, в 1970-х – в Китае, Индонезии, Турции, Кении, Сальвадоре, на Филиппинах, в 1980-х – в ряде стран Центральной Америки, в 1990-х – в Австралии. Соответственно и суммарная мощность ГеоТЭС стран мира возрастала следующим образом (в тыс. кВт): в 1950 г. – 240, в 1960 г. – 370, в 1970 г. – 715, в 1980 г. – 2400, в 1990 г. – 8770. Число стран, имеющих ГеоТЭС, уже превышает 20.

До недавнего времени внеконкурентное первое место по количеству (около 20) и мощности (более 3,2 млн кВт) ГеоТЭС занимали США. В этой стране геотермальные электростанции работают в штатах Юта, Гавайи, но большинство их находится в северной части Калифорнии, в Долине гейзеров. Однако с начала 1990-х гг. разработки геотермальных источников в США явно замедлились, почти прекратилась практика предоставления разного рода льгот производителям и потребителям геотермальной энергии. К тому же ГеоТЭС в Долине гейзеров пострадали от падения внутреннего давления и уменьшения поступления горячего пара. Так что в последнее время строительство новых ГеоТЭС в стране не происходило.

Вторым мировым лидером в области геотермальной электроэнергетики стали Филиппины, которые уже в 1995 г. имели несколько ГеоТЭС мощностью 2,2 млн кВт и ныне, по-видимому, по этому показателю уже обогнали США. Первая ГеоТЭС была сооружена здесь в 1977 г. (с помощью иностранного капитала). Согласно расчетам, к 2000 г. геотермальные электростанции этой страны должны были удовлетворять до 30 % ее потребности в электроэнергии. Далее по размерам производства электроэнергии на ГеоТЭС следуют Мексика, Италия и Япония.

Среди ученых нет единого мнения о перспективах развития геотермальной электроэнергетики. Одни считают эти перспективы довольно ограниченными, исходя из того, что на Земле (в том числе и при помощи космических снимков) разведано лишь около ста «горячих точек» конвективного выхода глубинного тепла Земли. Другие, напротив, оценивают эти перспективы весьма высоко. Можно добавить, что главным координатором работ в этой области служит Международная геотермальная ассоциация, периодически созывающая свои симпозиумы.

Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.

«Ветер служил человечеству с той поры, – пишут американские экологи супруги Ревелль, – как первобытные люди впервые подняли парус над хрупким челноком, выдолбленным из цельного бревна. Преобладающие западные ветры были той силой, которая обеспечила открытие Нового Света и несла испанскую армаду от победы к победе. Пассаты надували паруса больших клиперов и помогли открыть Индию и Китай для торговли с Западом». Они же упоминают о том, что древние персы использовали силу ветра для размола зерна, и о том, что в средневековой Голландии ветряные мельницы служили не только для размола зерна, но и для откачки воды с польдеров. В середине XIX в. в США был изобретен многолопастной ветряк, использовавшийся для подъема воды из колодцев. Но получать при помощи ветра электроэнергию первыми научились датчане в 1890 г.

Технологические основы современной ветроэнергетики разработаны уже достаточно хорошо.

Пока наибольшее распространение получили малые и средние ветроэнергетические установки (ВЭУ) мощностью от 100 до 500 кВт. Но уже началось серийное производство ветротурбин мощностью от 500 до 1000 кВт. Их ротор имеет диаметр от 35 до 80 м, а высота башни достигает 90 м. Малые ветроустановки обычно используют для автономной работы (например, на отдельной ферме), а более крупные чаще концентрируют на одной площадке, создавая так называемую ветровую ферму. Самым крупным производителем ветродвигателей была и остается Дания, за которой следуют Германия, США, Япония, Великобритания, Нидерланды.

В последние два десятилетия ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды НВИЭ. Отсюда и значительный рост мощностей ветроустановок в мире. В 1981 г., когда началось их применение в американском штате Калифорния, общая их мощность составляла всего 15 тыс. кВт. К 1985 г. она возросла до 1,1 млн, к 1990 г. – до 2 млн, к 1995 г. – до 5 млн (все такие установки давали тогда 8 млрд кВт ч электроэнергии), а к 2000 г. – до 13 млн кВт. Согласно некоторым прогнозам, в 2006 г. она может достигнуть 36 млн кВт.

География мировой ветроэнергетики претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ВЭУ (или ветроэлектростанций – ВЭС) первое место занимали США: в 1985 г. на эту страну приходилось 95 %, да и в 1994 г. – 48 % всех мировых мощностей. Почти все они сконцентрированы здесь в штате Калифорния, где находятся и самые крупные в стране отдельные ветро-электростанции и самые большие «ветровые фермы» (на одной из них размещено около 1000 ВЭУ, так что ее суммарная мощность превышает 100 тыс. кВт). Кроме того, такие установки работают в штатах Нью-Мексико, Гавайи, Род-Айленд, ведется или намечается их сооружение и в нескольких других штатах.

Однако во второй половине 1990-х гг. мировое лидерство в ветроэнергетике перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55 % мировых мощностей ветроэнергетических установок. Ветроэлектростанции уже работают в 14 странах Западной Европы, причем в первую их пятерку входят Германия, Дания, Нидерланды, Великобритания и Испания, но определяющая роль принадлежит двум первым из них.

До начала 1990-х гг. европейское первенство удерживала страна – родоначальник ветроэнергетики– Дания. Тем не менее во второй половине 1990-х гг. Дания уступила его Германии, мощности ветроустановок которой в 1999 г. достигли 4 млн кВт, а выработка электроэнергии на них – б млрд кВт ч. К тому же в отличие от Дании, где преобладают мелкие автономно работающие установки, для Германии более характерны крупные «ветровые фермы». Больше всего их на самом «продуваемом» участке ее территории – побережье Северного моря в пределах земли Шлезвиг-Гольштейн. В 2005 г. здесь была введена в строй крупнейшая в мире ВЭУ, которая ежегодно производит 17 млн квт-ч электроэнергии.

В целом еще в середине 1990-х гг. ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн человек. В рамках ЕС была поставлена задача к 2005 г. увеличить долю ветроэнергетики в производстве электроэнергии до 2 % (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030 г. – до 30 %.

Из других стран мира, имеющих перспективы для развития ветроэнергетики, можно назвать Индию, Китай и Японию в Азии, Канаду в Северной Америке, Мексику, Бразилию, Аргентину, Коста-Рику в Латинской Америке, Австралию. Но настоящий рывок в этой сфере в 1990-е гг. предприняла только Индия, которая, с одной стороны, испытывает дефицит традиционных видов топлива, а с другой – обладает значительным потенциалом ветроэнергетических ресурсов, обусловленным муссонной циркуляцией воздушных масс в сочетании с особенностями строения рельефа страны. В результате осуществления большой государственной программы строительства ВЭУ, рассчитанной на привлечение иностранного капитала, Индия по их суммарной мощности уже обогнала Данию и вышла на третье место в мире после США и Германии.

Хотя солнечную энергию использовали для обогрева домов еще в Древней Греции, зарождение современной гелиоэнергетики произошло только в XIX в., когда был сконструирован солнечный коллектор для подогрева воды, а становление ее – уже в XX в. Наиболее благоприятные условия для широкого использования солнечной энергии существуют на территориях, расположенных южнее 50-й параллели. Что же касается самого ее преобразования в тепловую или электрическую энергию, то его можно осуществлять при помощи трех технико-технологических способов.

Первый способ, который получил наиболее широкое распространение, – это теплоснабжение с использованием солнечных коллекторов-водонагревателей, которые неподвижно устанавливают на крышах домов под определенным углом к горизонту. Они обеспечивают нагрев теплоносителя (вода, воздух, антифриз) на 40–50 °C по сравнению с температурой окружающей среды. Их применяют также для кондиционирования воздуха, сушки сельскохозяйственных продуктов, опреснения морской воды и др. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчета на душу населения достигнута в Израиле и на Кипре. Так, в Израиле 800 тыс. солнечных коллекторов обеспечивают горячей водой 70 % жителей этой страны. Солнечные коллекторы применяются также в Китае, Индии, ряде стран Африки (преимущественно для привода в действие насосных установок) и Латинской Америки.

Второй способ заключается в преобразовании солнечной энергии уже не в тепловую, а в электрическую, причем «напрямую» – при помощи фотоэлектрических установок (солнечных батарей) на кремниевой основе – наподобие тех, которые устанавливают на космических аппаратах. Первая такая электростанция была сооружена в Калифорнии в 1981 г., а затем они появились и в других регионах США, и в других странах. Хотя получаемая при их помощи электроэнергия продолжает оставаться еще весьма дорогой (30 центов за 1 кВт ч), наиболее богатые страны уже развернули широкую кампанию за установку солнечных батарей на крышах и фасадах домов. Лидерство в этом деле захватила Япония, которая контролирует также около 1/3 мирового рынка фотоэлектрических элементов. Но и Германия уже приступила к осуществлению программы под названием «1000 крыш и фасадов», а в США в 1997 г. тогдашний президент страны Клинтон провозгласил программу «Миллион крыш».

Наконец, третий способ, также обеспечивающий превращение солнечной энергии в электрическую, реализуется при помощи сооружения собственно солнечных электростанций (СЭС), которые подразделяются на два типа – башенные и параболические.

В 1970-х – начале 1980-х гг. башенные СЭС были построены в США, Японии, Испании, Италии, во Франции, в СССР, но затем они были остановлены из-за неконкурентоспособности. Однако опыт, накопленный при их эксплуатации, позволил начать проектирование нового поколения таких СЭС. На мировом «солнечном саммите», проведенном в середине 1990-х гг., была разработана Мировая солнечная программа на 1996–2005 гг., имеющая глобальные, региональные и национальные разделы.

Биомасса также представляет собой особый класс энергоресурсов, включающий в себя древесину, отходы лесной и деревообрабатывающей промышленности, растениеводства и животноводства. Когда биомассу относят к НВИЭ, то имеют в виду не прямое ее сжигание, например в виде дров или навоза, а газификацию и пиролиз, биологическую переработку с целью получения спиртов или биогаза. Для этой цели в зависимости от сельскохозяйственной специализации той или иной страны обычно используют отходы сахарного тростника, рисовую шелуху, стебли кукурузы, хлопчатника, скорлупу кокосовых, земляных и других орехов, а также навоз. Производство биогаза, хотя и полукустарными способами, получило наибольшее развитие в Китае, где насчитывают миллионы биогазовых установок, рассчитанных на одну семью. Быстро растет число таких установок в Индии. Есть они также в странах Юго-Восточной Азии, Центральной Америки, СНГ.

Крупнейший в мире производитель этилового спирта – Бразилия. С целью замены импортной нефти здесь в 1970-х гг. была разработана, а затем осуществлена в широких масштабах специальная программа «Этанол», предусматривавшая создание специальных плантаций сахарного тростника, из которого получают этиловый спирт, сооружение в сельской местности 280 дистилляционных заводов. Теперь значительная часть автопарка страны работает либо на чистом этаноле, либо на спирто-бензиновых смесях.

К альтернативным источникам энергии можно отнести также синтетическое горючее. В качестве сырья для его получения обычно рассматривают каменный и бурый уголь, горючие сланцы, битуминозные песчаники и биомассу.

Опыт получения синтетической нефти при помощи гидрогенизации угля имелся еще в Германии 1930-х гг. После начала энергетического кризиса многие страны Запада разработали обширные программы получения синтетического горючего из угля при помощи этого способа. То же относится и к газификации угля. Только в США, согласно энергетической программе президента Форда, намечалось построить 35–40 заводов по переработке угля в горючий газ. Но большинству этих программ не суждено было сбыться. Когда нефть снова подешевела, они потеряли актуальность. Жидкое горючее из угля в промышленных масштабах получает только ЮАР, где в 1980-х гг. оно наполовину удовлетворяло потребности страны в автомобильном топливе.

Крупнейшими ресурсами горючих (битуминозных) сланцев обладают страны СНГ, Эстония, США, Бразилия, Китай. По данным МИРЭК, из уже разведанных и доступных для извлечения запасов этих сланцев можно получить 40–50 млрд т нефти, что сравнимо с запасами зоны Персидского залива! Но в промышленных масштабах получение «сланцевой» нефти пока не практикуется.

То же можно сказать и об использовании битуминозных песчаников, запасы которых особенно велики в Канаде, Венесуэле и Колумбии. В Канаде они залегают на площади 75 тыс. км 2 в бассейне р. Атабаска (провинция Альберта). Подсчитано, что они содержат до 130 млрд т нефти, из которых доступны для извлечения 30–40 млрд т. В начале 1970-х гг. здесь были созданы мощности, позволявшие получать несколько миллионов тонн нефти. Но этот эксперимент не был продолжительным. Помимо высокой себестоимости такой нефти, сказалась и угроза состоянию окружающей среды. В Венесуэле, в так называемом поясе Ориноко, запасы тяжелой нефти, содержащейся в песчаниках, оцениваются в 185 млрд т, извлекаемые – в 40 млрд т. Их используют для получения смеси битума и воды, которую применяют как топливо.

Россия обладает большими ресурсами практически всех видов нетрадиционных возобновляемых источников энергии. Их экономически оправданный потенциал, предназначенный для первоочередного освоения, составляет в общей сложности 275 млн т условного топлива в год, т. е. примерно 1/4 годового потребления энергетических ресурсов в стране (в том числе геотермальная энергия – 115 млн тут, энергия биомассы – 35 млн, энергия ветра– 10 млн, солнечная энергия – 13 млн тут). Однако доля используемых НВИЭ в стране незначительна – всего 1 %, а ежегодное замещение органического топлива всеми их видами составляет 1,5 млн тут. В России как в стране очень богатой органическим топливом и гидроэнергией в течение длительного времени основное внимание традиционно уделялось крупнейшим и крупным энергетическим объектам. В условиях же хронического дефицита материально-финансового обеспечения трудно предвидеть их развитие в ближайшем будущем. Исключение составляет обширная зона Севера России, где более 70 % территории с населением в 20 млн человек образуют особый регион децентрализованного энергоснабжения. Вот почему федеральная программа «Энергообеспечение северных территорий в 1996–2000 гг.» предусматривала частичную замену доставляемого сюда органического топлива местными альтернативными источниками энергии. Энергетическая стратегия России исходит из того, что в 2010 г. НВИЭ будут удовлетворять 1 % потребностей страны в энергии.

Под выражением «возобновляемая энергия» либо регенеративная, то есть «зеленая энергия», подразумевается энергия источников, неисчерпаемая по человеческим меркам. В окружающей среде она представлена в широком спектре – солнечная, ветровая, водная, включая морские волны и течения, силы приливов и отливов океана, биомассы, геотермального тепла.


В последние годы широкое развитие получила альтернативная энергетика. Она представлена самыми разнообразными видами ВИЭ, которые постоянно возобновляются.

Под формулировкой «возобновляемые источники энергии» подразумеваются определенные формы энергии, вырабатываемые в естественных условиях, за счет происходящих на поверхности Земли природных процессов.

Условно они делятся на классы – возобновляемые и невозобновляемые:

  • к первому классу относятся источники, которые имеют неисчерпаемые источники энергии по человеческим меркам. Они постоянно пополняются естественным путем в ходе прохождения планетой определенного цикла;
  • второй класс представлен невозобновимыми природными ресурсами, в число которых входит газ, нефть, уголь, уран. Они относятся к энергоресурсам, сокращающимся с истечением времени без возобновления до прежних размеров.

Возобновляемый источник энергии предоставляют ресурсы, в число которых входит солнечный свет, водный поток, приливы и геотермальная теплота. Их возобновлению способствует круговорот воды в природе, цикличность его определяется временем года. Явление способствует постоянному восполнению энергии естественным путем.

ВИЭ подразделяется на группы – традиционные и нетрадиционные источники

В первую группу входит:

  • гидравлическая энергия воды, которая преобразуется в электрическую энергию. Каждая энергетическая станция вырабатывает ее посредством действия гидросилового оборудования, устанавливаемого на ней;
  • энергия биомассы, получаемая в ходе сжигания древесного угля, дров, торфа. Она применяется в основном для выработки тепла, подаваемого в отопительную систему жилых и нежилых зданий;
  • геотермальная энергия, являющаяся результатом естественного гниения и поглощения минералами, находящимися в недрах земли, солнечной энергии. В сущности, солнце есть неисчерпаемый источник энергии. Его тепловое излучение преобразовывается в электрическую энергию с применением фотоэлементов, тепловых машин.

Вторая группа состоит из энергии, которая существует в природе, окружающей человека:

  • солнечной;
  • ветровой;
  • морских волн и течений;
  • приливов и отливов океана;
  • биотоплива;
  • низкопотенциальной тепловой.

Принцип использования возобновимой энергии заключается в ее извлечении из постоянно происходящих в окружающей среде геологических процессов. Она предоставляется потребителю, который использует ее для решения технических задач и удовлетворения своих нужд.

Характеристики отдельных ВИЭ

Многие нетрадиционные и возобновляемые источники энергии без затруднений устанавливаются в жилых зданиях. Отдельные его виды можно применять в тяжелой и легкой промышленности, установив в производственных зданиях. В их число входят возобновляемые ресурсы, предоставляемые человеку самой природой.

Наибольшую популярность обрела энергия биомассы, являющаяся одним из видов «зеленой энергии». Она позволяет рационально использовать природные ресурсы планеты. Ресурсами являются отходы деревообрабатывающей и бумажной промышленности, отраслей сельского хозяйства, включая бытовой и строительный мусор, из которого вырабатывается естественным путем метан.

Воздушные массы атмосферы есть своего рода вечный неиссякаемый источник, потому что обладают огромной кинетической энергией. Они перемещаются под воздействием геологической деятельности ветра. Его сила преобразуется в электрическую энергию с помощью ветровых установок. Несмотря на довольно высокую стоимость, они успешно используются в районах со спокойным ландшафтом.

Еще один вечный источник энергии – Солнце. Солнечная энергетика является одним из направлений НВИЭ, основанной на непосредственном применении солнечного излучения для получения энергии. Она является бесплатным источником, который возобновляется. Помимо того, ее относят к категории «чистая энергетика», не производящей вредных отходов. Но солнечные установки применимы только в тех широтах планеты, где достаточно солнечного света для выработки электрической энергии.

Водный поток есть неиссякаемый источник, обладающий потенциальной и кинетической энергией. Она в ходе работы преобразуется в электрический ток. Ярким примером использования гидравлической энергии рек, воды является строительство малых и микро ГЭС, а также крупных ГЭС с большими мощностями.

Малые и микро ГЭС обрели популярность во многих странах, использующих энергию возобновляемых источников малых водотоков с целью выработки электрического тока. Нужно заметить, что в последние годы строительство крупных гидроэлектростанций сократилось до минимума.

«Зеленая энергетика» представлена энергией приливов и отливов океанов, морских волн и течений. Для их использования на берегу морей и океанов строятся приливные станции. Они преобразуют кинетическую энергию вращения Земли, возникающую за счет гравитационных сил Луны и Солнца, которые два раза в сутки изменяют уровень воды.

Достоинства и недостатки ВИЭ

Основное преимущество заключается в том, что возобновляемые ресурсы являются дешевым источником энергии. Это неиссякаемый источник энергии, который предоставлен в неограниченном количестве в окружающей среде, не являясь следствием целенаправленной деятельности человека.

Нужно заметить, что возобновляемые источники энергии имеют один недостаток. Он заключается в низкой степени концентрации, поэтому нельзя получаемую энергию передать на большие расстояния. Как правило, ВИЭ подлежит использованию вблизи потребителя.

Возобновляемая энергетика будущего

Учеными планеты ведутся дальнейшие разработки технологии водородного топлива, которая выделяет энергию при помощи синтеза атомов водорода в атом гелия. В будущем они намерены получать возобновляемые ресурсы не только с применением наземных конструкций, но и спутников Земли, чтобы использовать находящуюся в черных дырах космическую энергию.

Основные предпосылки для развития ВИЭ в Российской Федерации:

  • обеспечение энергетической безопасности страны;
  • сохранение окружающей среды, что позволит обеспечить экологическую безопасность;
  • достижение нового уровня на мировом рынке возобновляемой энергии, что обозначено в общем стратегическом плане развития государства;
  • претворение в жизнь мер, способствующих сохранить собственные возобновляемые ресурсы для будущих поколений;
  • увеличение размеров потребления сырья, которое используется в качестве топлива.

В перспективе использование возобновляемых источников энергии позволит человечеству восполнить топливный дефицит, удешевить добычу топлива, тепла и моторного масла. Кроме того, их использование очищает атмосферу, что, несомненно, поможет улучшить экологическую обстановку планеты.

И в заключение необходимо отметить, что возобновляемые источники электроэнергии обладают несомненным преимуществом. Оно заключается в их неисчерпаемости и экологической чистоте. Человек может использовать их без каких-либо опасений, потому что они не нарушают энергетический баланс планеты. К тому же возобновляемые ресурсы находятся вокруг него всюду.

по дисциплине:

"Основы энергосбережения"

Тема: "Возможности использования нетрадиционных и возобновляемых источников энергии"

Введение

Виды нетрадиционных возобновляемых источников энергии и технологии их освоения

Использование возобновляемых источников энергии

Возобновляемые источники энергии в России до 2010 года

Роль нетрадиционных и возобновляемых источников энергии при реформировании электроэнергетического комплекса Свердловской области

Заключение

Один из основных аргументов против использования НВИЭ - их "дороговизна". Однако приведенные в таблице 1 данные по средней стоимости электроэнергии, полученной от различных источников энергии на электростанциях стран ЕС (в центах за кВт. ч), свидетельствуют об обратном: одной из самых дорогих оказывается энергия, полученная на АЭС. Все остальные источники (за исключением фотоэлектрических станций) значительно дешевле.

Таблица 1.

Согласно официальным оценкам (Минтопэнерго), экономический потенциал ВИЭ в России представлен в таблице 2.


Таблица 2.

Однако энергия большинства НВИЭ обладает малой плотностью потоков энергии (рассеянностью или низким удельным потенциалом) и нерегулярностью поступления, зависящей от климатических условий, суточных и сезонных циклов. Поэтому для эффективного использования НВИЭ, собственно ветра, солнца, морских волн и др., необходимо решить ряд инженерных задач по созданию экономичных и надежных устройств и систем, воспринимающих, концентрирующих и преобразующих эти виды источников энергии в приемлемую для потребителя тепловую, механическую и электрическую энергию. Для обеспечения бесперебойного энергоснабжения за счет НВИЭ, особенно автономных потребителей, система должна быть укомплектована аккумуляторами и преобразователями. Особенно перспективны гибридные системы, использующие одновременно два или несколько видов НВИЭ, например солнце и ветер, взаимно дополняющих друг друга, в сочетании с аккумулятором и резервным двигателем внутреннего сгорания в качестве привода электрогенератора.

При существующем соотношении цен на органическое топливо и оборудование уже сегодня имеются зоны экономически эффективного применения НВИЭ и в России.

По электроэнергии - это районы автономного электроснабжения, особенно использующие привозное топливо, а также территории дефицитных энергосистем.

По теплу - это практически вся территория России, особенно районы с привозным топливом, экологически напряженные населенные пункты и города, а также места массового отдыха населения.

Ветровая энергетика.

Использование энергии ветра сегодня чрезвычайно динамично развивающаяся отрасль мировой энергетики. Если суммарная установленная мощность ветровых энергоустановок (ВЭУ) в мире в 2000 году составляла 17,8 ГВт, то в 2002 году она достигла уже 31,1 ГВт. По данным 2002 г. странами-лидерами по установленной мощности (ГВт) ВЭУ являлись:

Германия - 12;

Испания - 4,8;

Дания - 2,9;

Индия - 1,7.

Тенденцией последних десятилетий является непрерывный рост единичной мощности сетевых ВЭУ. Еще 10 лет назад типичной ВЭУ в составе ветровых ферм была установка мощностью 300-500 кВт. В 2000-2002 годах серийной стала ВЭУ мощностью 1÷1,2 МВт. Некоторые фирмы начали производить еще более крупные установки - до 4,5 МВт в основном для применения на шельфе, где наиболее благоприятны характеристики ветра. Это приводит к снижению стоимости установленного киловатта, которая сегодня находится на уровне 1000 долл. /кВт, и стоимости вырабатываемой электроэнергии.

При благоприятных характеристиках ветра стоимость электроэнергии, вырабатываемой крупной ветровой фермой, приближается к стоимости на топливных электростанциях. Все крупные ВЭУ работают совместно с сетью, и их суммарная мощность не должна превышать 15-20% от емкости сети.

В России до недавнего времени развитию ветроэнергетики не уделялось должного внимания. Разрабатывавшиеся в конце прошлого века ВЭУ мощностью в 250 кВт не были доведены до необходимых требований по надежности и эффективности. Аналогичной оказалась судьба разработки ОКБ "Радуга" ВЭУ мощностью в 1 МВт. Поэтому практически все крупные ВЭУ, действующие сегодня в России, укомплектованы импортными агрегатами (Табл.3).

Таблица 3.

В отличие от производства крупных ВЭУ, в России имеется довольна развитая производственная база по выпуску автономных ветроустановок малой мощности: от 0,04 до 16 кВт, в том числе ветро-дизельные агрегаты. Около 10 изготовителей готовы выпускать такие ВЭУ, а некоторые из них (ЦНИИ "Электроприбор" г. Санкт-Петербург) поставляют свои изделия заграницу. В России потенциальный рынок для таких установок велик, однако, расширение выпуска не происходит из-за малого платежеспособного спроса. Для более широких поставок заграницу, прежде всего в развивающиеся страны, необходима сертификация установок по международным стандартам и наладка гарантийного и сервисного обслуживания.

К малым ГЭС условно относят гидроэнергетические агрегаты мощностью от 100 кВт до 10 МВт. Меньшие агрегаты относятся к категории микро-ГЭС. Суммарная мощность малых ГЭС в мире сегодня превышает 70 ГВт.

Малая гидроэнергетика за последние десятилетия заняла устойчивое положение в электроэнергетике многих стран мира. В ряде развитых стран установленная мощность малых ГЭС превышает 1 млн. кВт (США, Канада, Швеция, Испания, Франция, Италия). Они используются как местные экологически чистые источники энергии, работа которых приводит к экономии традиционных топлив, уменьшая эмиссию диоксида углерода. Лидирующая роль в развитии малой гидроэнергетики принадлежит КНР, где суммарная установленная мощность малых ГЭС превышает 13 млн. кВт. В развивающихся странах создание малых ГЭС как автономных источников электроэнергии в сельской местности имеет огромное социальное значение. При сравнительно низкой стоимости установленного киловатта и коротком инвестиционном цикле малые ГЭС позволяют дать электроэнергию удаленным от сетей поселениям.

В России энергетический потенциал малых рек очень велик. Число малых рек превышает 2,5 млн., их суммарный сток превышает 1000 км3 в год. По оценкам специалистов сегодняшними доступными средствами на малых ГЭС в России можно производить около 500 млрд. кВтч электроэнергии в год.

В середине прошлого века в России работало большое количество малых ГЭС, однако, впоследствии предпочтение было отдано крупному гидроэнергостроительству, и малые ГЭС постепенно выводились из эксплуатации. Сегодня интерес к малым ГЭС возобновился. Несмотря на то, что их экономические характеристики уступают крупным ГЭС, в их пользу работают следующие аргументы. Малая ГЭС может быть сооружена даже при нынешнем дефиците капиталовложений за счет средств частного сектора экономики, фермерских хозяйств и небольших предприятий. Малая ГЭС, как правило, не требует сложных гидротехнических сооружений, в частности, больших водохранилищ, которые на равнинных реках приводят к большим площадям затоплений. Сегодняшние разработки малых ГЭС характеризуются полной автоматизацией, высокой надежностью и полным ресурсом не менее 40 лет. Малые ГЭС позволяют лучше использовать солнечную и ветровую энергию, так как водохранилища ГЭС способны компенсировать их непостоянство.

В 90-е годы в России проблема производства оборудования для малых и микро-ГЭС в основном была решена. Особенно привлекательно создание малых ГЭС на базе ранее существовавших, где сохранились гидротехнические сооружения. Сегодня их можно реконструировать и технически перевооружить. Целесообразно использовать в энергетических целях существующие малые водохранилища, которых в России более 1000.

В стране имеется ряд предприятий, производящих и продающих гидроэнергетическое оборудование, отвечающее самым современным требованиям и не уступающее лучшим мировым образцам. С использованием этого оборудования малые ГЭС могут создаваться как полностью автономные, так и работать на сеть. Последнее требует разработки законодательства, регламентирующего взаимоотношения между индивидуальными производителями электроэнергии и сетью.

Наиболее просто использовать солнечную энергию для получения тепла для горячего водоснабжения. Солнечные водонагревательные установки (СВУ) широко распространены в странах с жарким климатом. Например, в Израиле закон требует, чтобы каждый дом был оснащен СВУ. В США СВУ повсеместно используются для подогрева воды в бассейнах. Вклад СВУ в энергетический баланс США эквивалентен примерно 2 млн. тут в год. Основным элементом СВУ является плоский солнечный коллектор, воспринимающий солнечную радиацию и преобразующий ее в полезное тепло. Поэтому обычно масштаб использования СВУ оценивают площадью установленных солнечных коллекторов. Суммарная площадь коллекторов, установленных сегодня в мире оценивается в 50-60 млн м 2 , что обеспечивает получение тепловой энергии, эквивалентной 5-7 млн тут в год. В Европейских странах к концу 2000 г. действовало 11,7 млн м 2 коллекторов.

В России СВУ на сегодня не нашли сколько-нибудь значительного распространения, что с одной стороны связано с относительно низкой стоимостью традиционных топлив, а с другой - бытующим мнением о недостаточной инсоляции в большинстве регионов России.

Вместе с тем в последние годы для всей территории России проведено тщательное исследование прихода солнечной энергии на поверхности, тем или иным образом ориентированные в пространстве, и показано, что практически для всех регионов страны, включая высокие широты, применение СВУ в течение 3-6 месяцев в году экономически оправдано.

В эти же годы рядом промышленных предприятий разработаны новые типы солнечных коллекторов, применение которых в СВУ вместо импортных, делает эти установки экономически более привлекательными. В связи с этим интерес к использованию СВУ в стране, особенно в южных регионах, возрос (Ростовская область, Ставропольский и Краснодарский края, Дагестан, Калмыкия, Бурятия). Хотя в летнее время даже в Сибири достаточно солнца, чтобы использовать СВУ. Представляет также интерес использование солнечных коллекторов в сочетании с тепловыми насосами (ТН) в том числе для отопления.

Для преобразования солнечной энергии в электроэнергию могут быть использованы как термодинамические методы, так и прямое преобразование с помощью фотоэлектрических преобразователей (ФЭП).

Сегодня в США работают 7 электростанций общей мощностью 354 МВт (э), использующие параболоцилиндрические концентраторы солнечной радиации и термодинамический метод преобразования. Известны проекты сооружения подобных СЭС в ряде стран так называемого солнечного пояса (Мексика, Египет и др.). Для России, с учетом характеристик солнечной радиации, подобные СЭС сегодня не представляют сколько-нибудь значительного интереса.

Фотоэлектрические преобразователи, напротив, находят все большее применение в самых разных регионах. В отличие от СЭС с концентраторами, ФЭП используют не только прямое, но и рассеянное излучение и не требуют дорогостоящих устройств для слежения за солнцем.

Рынок ФЭП развивается весьма динамично. Суммарная мощность установленных в мире ФЭП в 2002 году, превысила 500 МВт. Это обусловлено принятием в ряде стран национальных программ, предусматривающих широкое внедрение ФЭП ("100 тысяч солнечных крыш" в Германии, "100 тысяч солнечных крыш" в Японии, "1 млн. солнечных крыш" в США). Быстрыми темпами растет и производство ФЭП, достигшее 1 ГВт в год. Япония и Германия прогнозируют в ближайшие годы выход на годовые объемы производства до 500 МВт каждая. Массовое производство ФЭП ведет к их удешевлению. Сегодня модули ФЭП на мировом рынке стоят около 4 долл. за пиковый ватт, что при удовлетворительной инсоляции приводит к стоимости электроэнергии в 15-20 цент/кВтч. Особенно велик рынок ФЭП в развивающихся странах. Установки сравнительно небольшой мощности в единицы кВт представляют сегодня практически единственную возможность приобщить сельское население этих стран к современной цивилизации.

Сегодня на мировом рынке присутствуют тысячи фирм, создающих различные установки с ФЭП, но только десятки фирм, в том числе в России умеют делать солнечные элементы. Начиная с середины 90х годов, в России инициированы работы по совершенствованию ФЭП и развертывание их опытно-промышленного производства. Была разработана технология изготовления ФЭП и внедрена в производство на фирме "Солнечный Ветер" (г. Краснодар) и ОКБ "Красное знамя" (г. Рязань). Это позволило выйти на мировой рынок и увеличить поставки ФЭП за рубеж. Так, например, фирма "Солнечный Ветер" поставляет свою продукцию в более чем 10 стран. За 1996-2001гг объем продаж увеличился в десять раз (с 60 до 600 кВт/год), а в 2002 году превысил 1 МВт.

Однако, несмотря на положительные тенденции мирового рынка, высокая стоимость, электроэнергии от ФЭП сдерживает их более широкое применение. Эта высокая стоимость обусловлена как дороговизной основного материала (как правило, кремния высокой чистоты), так и дороговизной технологического процесса. Поэтому в мире и в России ведутся интенсивные исследования и разработки, направленные на удешевление ФЭП. Одним из перспективных направлений является создание высокоэффективных ФЭП с концентраторами солнечного излучения. Наиболее интенсивно исследования в этой области проводятся в США и России. КПД разработанных в США солнечных элементов (СЭ) на основе монокристаллического кремния достигает 20-25% при концентрации в 10-100 солнц и рабочей температуре 25оС. При большей концентрации эти СЭ требуют принудительного охлаждения, ибо их кпд существенно снижается с ростом температуры (на 1/3 при повышении температуры на 100 о С). Для работы при концентрации в 300-1000 солнц более перспективны СЭ на основе системы арсенид галлия - арсенид алюминия, впервые разработанной в ФТИ им. А.Ф. Иоффе. Значения КПД каскадных СЭ на основе GaAs, достигнутые в США и России (ФТИ им. А.Ф. Иоффе), составляют около 30% при концентрации в 500-1000 солнц и при реальных рабочих температурах 60-80 о С. Поэтому, несмотря на более высокую стоимость арсенида галлия, цены на энергоустановки с концентрацией по оценкам окажутся приблизительно в 2 раза ниже плоских кремниевых.

Вклад биомассы в мировой энергетический баланс составляет около 12%, хотя значительная доля биомассы, используемой для энергетических нужд, не является коммерческим продуктом и, как результат, не учитывается официальной статистикой. В странах Европейского Союза, в среднем, вклад биомассы в энергетический баланс составляет около 3%, но с широкими вариациями: в Австрии - 12%, в Швеции - 18%, в Финляндии - 23%.

Первичной биомассой являются растения, произрастающие на суше и в воде. Биомасса образуется в результате фотосинтеза, за счет которого солнечная энергия аккумулируется в растущей массе растений. Энергетический кпд собственно фотосинтеза составляет около 5%. В зависимости от рода растений и климатической зоны произрастания это приводит к различной продуктивности в расчете на единицу площади, занятой растениями. Для северных зрелых, медленно растущих лесов продуктивность составляет 1 т прироста древесины в год на 1 га. Для сравнения урожай кукурузы (вся зеленая масса) в штате Айова, США в 1999 г. составил около 50 т/га.

Для энергетических целей первичная биомасса используется в основном как топливо, замещающее традиционное ископаемое топливо. Причем речь, как правило, идет об отходах лесной и деревоперерабатывающей промышленности, а также об отходах полеводства (солома, сено). Теплотворность сухой древесины достаточно высока, составляя в среднем 20 ГДж/т. Несколько ниже теплотворность соломы, например, для пшеничной соломы она составляет около 17,4 ГДж/т. В то же время большое значение имеет удельный объем топлива, который определяет размеры соответствующего оборудования и технологию сжигания. В этом отношении древесина значительно уступает, например, углю. Для угля удельный объем составляет около 30 дм3/ГДж, тогда как для щепы, в зависимости от породы дерева, этот показатель лежит в пределах 250 - 350 дм3/ГДж; для соломы удельный объем еще больше, достигая 1 м3/ГДж. Поэтому сжигание биомассы требует либо ее предварительной подготовки, либо специальных топочных устройств. В частности, в ряде стран распространение получил способ уплотнения древесных отходов с превращением их в брикеты или, так называемые, пелетки. Оба способа позволяют получить топливо с удельным объемом около 50 дм3/ГДж, что вполне приемлемо для обычного слоевого сжигания. Например, в США годовое производство пелеток составляет около 0,7 млн. т, а их рыночная цена - около 6 долл. /ГДж при теплотворности около 17 ГДж/т.

В России использование отходов лесной, деревообрабатывающей и целлюлозно-бумажной промышленности для коммерческого производства электроэнергии и тепла пока достаточно ограничено. По данным Госкомстата в 2001 г. в стране имелось 27 малых ТЭЦ с общей установленной мощностью 1,4 ГВт, использовавших биомассу совместно с традиционными топливами (мазут, уголь, газ). При этом собственно на биомассе выработано 2,2 млрд. кВтч электроэнергии и 9,7 млн. Гкал тепла из общей выработки 5,5 млрд. кВтч и 24 млн. Гкал (т.е. около 40% от общей выработки).

Наряду с первичной растительной биомассой значительный энергетический потенциал содержится в отходах животноводства, твердых бытовых отходах и отходах различных отраслей промышленности. Использование этого потенциала возможно термохимическими или биохимическими методами. В первом случае речь идет в основном о твердых бытовых отходах, которые либо сжигаются, либо газифицируются на мусороперерабатывающих фабриках. Во втором случае сырьем является навоз или жидкие бытовые стоки, которые перерабатываются в биогаз.

В России ежегодно образуется около 60 млн. т твердых бытовых отходов (ТБО); количество отходов животноводства и птицеводства составляет около 130 млн. т/год, а осадков сточных вод 10 млн. т/год. Энергетический потенциал этих отходов составляет 190 млн. т у. т. Этот потенциал используется пока совершенно недостаточно. Имеются единичные опытные установки по переработке ТБО, эксплуатационные характеристики которых нельзя признать удовлетворительными для широкого промышленного использования. В этом направлении предстоит еще большая работа.

Серьезные успехи были достигнуты в области переработки жидких городских стоков. Уже с 50-х годов прошлого века на Курьяновской и Люберецкой станциях г. Москвы производилась очистка городских стоков и работали мощные биогазогенераторы - метантенки. Этот радикальный метод переработки активного ила и осадков сточных вод был затем реализован на станциях очистки Новосибирска, Сочи и других городов России.

В основе биохимической переработки отходов животноводства и птицеводства лежит анаэробное сбраживание. В результате этого процесса органическая масса отходов определенными штаммами бактерий превращается в биогаз. Обычный состав биогаза: до 70% метана и 30% диоксида углерода.

В настоящее время в России разработкой, созданием, производством опытных серий оборудования, установок в целом, реализующих высокорентабельные биогазовые технологии, занимается ЗАО Центр "ЭкоРос". Этот Центр разработал и выпускает опытными сериями индивидуальные биогазовые установки ИБГУ-1 для хозяйств, имеющих до 5-6 голов крупного рогатого скота. За 10 лет Центр произвел и реализовал 86 комплектов ИБГУ-1: из них - 79 в России, 4 - в Казахстане, 3 - в Белоруссии. С 1997 года по документации ЗАО Центр "ЭкоРос" освоено производство таких установок в Китае в г. Ухань на совместном китайско-российском предприятии.

Под геотермальной энергией понимают физическое тепло глубинных слоев земли, имеющих температуру, превышающую температуру воздуха на поверхности. Носителями этой энергии могут быть как жидкие флюиды (вода и/или пароводяная смесь), так и сухие горные породы, расположенные на соответствующей глубине. Из недр Земли на ее поверхность постоянно поступает тепловой поток, интенсивность которого в среднем по земной поверхности составляет около 0,03 Вт/м 2 . Под воздействием этого потока, в зависимости от свойств горных пород, возникает вертикальный градиент температуры - так называемая геотермальная ступень. В большинстве мест она составляет не более 2-3К/100м. Однако в местах молодого вулканизма, вблизи разломов земной коры геотермальная ступень повышается в несколько раз и уже на глубинах в несколько сот метров, а иногда нескольких километров, находятся либо сухие горные породы, нагретые до 100 о С и более, либо запасы воды или пароводяной смеси с такими температурами.

Принято считать, что если температура в геотермальном месторождении превышает 100оС, оно пригодно для создания геотермальной электростанции (ГеоЭС). При более низкой температуре геотермальный флюид целесообразно использовать для теплоснабжения. Если температура флюида для непосредственного теплоиспользования слишком низка, ее можно поднять, применяя тепловые насосы (ТН).

В настоящее время в мире суммарная мощность действующих ГеоЭС составляет около 10 ГВт (э). Суммарная мощность существующих геотермальных систем теплоснабжения оценивается в 17 ГВт (т).

Запасы геотермальной энергии в России чрезвычайно велики, по оценкам они в10-15 раз превышают запасы органического топлива в стране. Практически на всей территории страны есть запасы геотермального тепла с температурами в диапазоне от 30 до 200оС. Сегодня на территории России пробурено около 4000 скважин на глубину до 5000 м, которые позволяют перейти к широкомасштабному внедрению самых современных технологий для локального теплоснабжения на всей территории нашей страны. С учетом того, что скважины уже существуют, энергия, получаемая из них, в большинстве случаев окажется экономически выгодной.

До недавнего времени масштаб использования геотермальной энергии в стране был весьма скромным. В последнее десятилетие благодаря инициативе и работам АО "Геотерм" и АО "Наука" совместно с Калужским турбинным заводом был сделан существенный скачок в использовании геотермальной энергии на Камчатке и Курильских островах. Построена Верхнемутновская ГеоЭС мощностью 12 МВт. В 2002 г. пущен в эксплуатацию первый блок Мутновской ГеоЭС мощностью 50 МВт. На Курильских островах сооружены геотермальные станции теплоснабжения.

Особенно велики и практически повсеместно распространены запасы термальных вод со сравнительно невысокой температурой, недостаточной для непосредственного теплоиспользования. Интерес представляет и использование тепла поверхностных слоев грунта, температура которых на глубине в несколько десятков метров круглый год практически постоянна и равна среднегодовой температуре воздуха в этом месте. Это означает, что зимой грунт может служить низкопотенциальным источником тепла для отопления с помощью тепловых насосов.

Открытие излучения урана впоследствии стало ключом к энергетическим кладовым природы. Главным, сразу же заинтересовавшим исследователей, был вопрос: откуда берется энергия лучей, испускаемых ураном, и почему уран всегда чуточку теплее окружающей среды?

Эрнест Резерфорд и Фредерик Содди. пришли их к революционному по тем временам выводу: атомы некоторых элементов подвержены распаду, сопровождающемуся излучением энергии в количествах, огромных по сравнению с энергией, освобождающейся при обычных молекулярных видоизменениях.

Невиданными темпами развивается сегодня атомная энергетика. За тридцать лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт!

В принципе энергетический ядерный реактор устроен довольно просто - в нем, так же как и в обычном котле, вода превращается в пар. Для этого используют энергию, выделяющуюся при цепной реакции распада атомов урана или другого ядерного топлива. На атомной электростанции нет громадного парового котла, состоящего из тысяч километров стальных трубок, по которым при огромном давлении циркулирует вода, превращаясь в пар. Эту махину заменил относительно небольшой ядерный реактор.

Самый распространенный в настоящее время тип реактора водографитовый.

Еще одна распространенная конструкция реакторов - так называемые водо-водяные. В них вода не только отбирает тепло от твэлов, но и служит замедлителем нейтронов вместо графита. Конструкторы довели мощность таких реакторов до миллиона киловатт. Могучие энергетические агрегаты установлены на Запорожской, Балаковской и других атомных электростанциях. Вскоре реакторы такой конструкции, видимо, догонят по мощности и рекордсмена - полуторамиллионик с Игналинской АЭС.

Но все-таки будущее ядерной энергетики, по-видимому, останется за третьим типом реакторов, принцип работы и конструкция которых предложены учеными, - реакторами на быстрых нейтронах. Их называют еще реакторами-размножителями. Обычные реакторы используют замедленные нейтроны, которые вызывают цепную реакцию в довольно редком изотопе - уране-235, которого в природном уране всего около одного процента. Именно поэтому приходится строить огромные заводы, на которых буквально просеивают атомы урана, выбирая из них атомы лишь одного сорта урана-235. Остальной уран в обычных реакторах использоваться не может. Возникает вопрос: а хватит ли этого редкого изотопа урана на сколько-нибудь продолжительное время или же человечество вновь столкнется с проблемой нехватки энергетических ресурсов?

Более тридцати лет назад эта проблема была поставлена перед коллективом лаборатории Физико-энергетического института. Она была решена. Руководителем лаборатории Александром Ильичом Лейпунским была предложена конструкция реактора на быстрых нейтронах. В 1955 году была построена первая такая установка.

Преимущества реакторов на быстрых нейтронах очевидны. В них для получения энергии можно использовать все запасы природных урана и тория, а они огромны - только в Мировом океане растворено более четырех миллиардов тонн урана.

Но все 400 атомных электростанции, работающих сейчас на планете, не могут создать угрозу, хотя бы сравнимую с угрозой, исходящей от 50 тысяч боеголовок.

Нет сомнения в том, что атомная энергетика заняла прочное место в энергетическом балансе человечества. Она, безусловно, будет развиваться и впредь, без отказано поставляя столь необходимую людям энергию. Однако понадобятся дополнительные меры по обеспечению надежности атомных электростанций, их безаварийной работы, а ученые и инженеры сумеют найти необходимые решения.

В 2000-2001 гг. в Минэнерго России была разработана подпрограмма "Энергоэффективность топливно-энергетического комплекса" как часть Федеральной целевой программы "Энергоэффективная экономика", рассчитанной на 2000-2002 годы и на перспективу до 2010 года.

Основными целями раздела подпрограммы "Энергообеспечение регионов", являются:

Улучшение социальных условий жизни населения, проживающего в удаленных и труднодоступных районах с автономным энергоснабжением, при сокращении издержек на доставку топлива в эти районы и увеличении надежности энергоснабжения.

Обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения (главным образом в дефицитных энергосистемах) во время аварийных и ограничительных отключений, особенно в сельской местности.

Улучшение экологических условий жизни населения, проживающего в городах и населенных пунктах со сложной экологической обстановкой, особенно в местах массового отдыха населения, за счет снижения вредных выбросов от традиционных энергоустановок путем частичной их замены установками нетрадиционной энергетики.

В соответствии с указанными целями были определены мероприятия:

Создание энергетических комплексов с применением оборудования возобновляемой энергетики в 2002-2010 гг. с государственной поддержкой в объеме 2077 млн. руб.

Развитие производственной базы оборудования нетрадиционной энергетики в 2002-2010 гг. с государственной поддержкой в объеме 218 млн. руб.

Научно-исследовательские и опытно-конструкторские работы в области нетрадиционной энергетики на 2002 - 2010 гг. с государственной поддержкой в объеме 46 млн. руб.

Планируемый прирост объема вырабатываемой электрической и тепловой энергии за счет возобновляемых источников в России приведен в табл.4.

Таблица 4.

Снижение вредных выбросов от объектов энергетики, использующих органическое топливо, за 2002-2010 гг. составит 140 тыс. тонн, и сокращение эмиссии СО 2 - более 7700 тыс. тонн. По Программе общие бюджетные затраты на развитие возобновляемой энергетики России в 2002-2010 годах составят 2, 3 млрд. рублей, а суммарная бюджетная эффективность, которая состоит из налоговых поступлений и сокращения затрат на "северный завоз", оценивается в 12, 6 млрд. рублей.

Планируемая общая установленная мощность микро и малых ГЭС составляет 369, 38 МВт при суммарной выработке электроэнергии в объеме 2032, 6 млн кВт*ч. Малая гидроэнергетика занимает ведущее место по объемам освоения среди возобновляемых источников энергии.

Программой запланировано освоение суммарной установленной мощности ветроэнергетических установок в объеме 228 МВт с выработкой электроэнергии количеством 570 млн кВт*ч.

Реализация солнечных фотоэлектрических установок определена в объеме 2, 36 МВт с выработкой 3, 77 млн кВт*ч. Установленная мощность гелионагревательных систем определена в объеме 69, 89 Гкал/ч при выработке энергии на 111, 82 тыс. Гкал, что обеспечивает замещение органического топлива в количестве 15, 99 тыс. т у. т.

Выработка электрической энергии на основе биомассы определена в объеме установленной мощности в 152, 02 МВт, а производство тепловой энергии 2753, 74 тысяч Гкал, что обеспечивает суммарное замещение органического топлива в количестве 686, 37 тысяч т у. т.

Планируемая установленная мощность геотермальных станций по выработке электроэнергии составит 68, 3 МВт, а по выработке тепловой энергии 16, 5 тыс. Гкал, что в сумме обеспечит замещение органического топлива в объеме 133, 84 тыс. т у. т.

Сооружение энергетических установок на основе использования низкопотенциальной энергии (преимущественно тепловых насосов) предусматривает освоение 543, 9 Гкал/ч установленной мощности с выработкой 2991, 4 тыс. Гкал и замещением 221, 2 тыс. т у. т.

Предусмотренное строительство комбинированных систем на базе возобновляемой энергетики и локальных энергоресурсов обеспечит ввод электрической мощности в объеме 30, 54 МВт с выработкой электроэнергии количеством 122, 16 млн. кВт*ч и тепловой энергии мощностью 10, 2 Гкал/ч с выработкой 314, 6 тыс. Гкал. Общее замещение органического топлива от комбинированных энергосистем составит 87, 75 тыс. т у. т.

Малая гидроэнергетика.

На территории области протекает более 18 тысяч рек и речек. Имеется более 100 водоёмов с объёмом воды выше 1 млн. м³; большая часть из них имеет регулируемый водосброс.

Гидрологический потенциал характеризуется следующими особенностями:

Наличием рек большими дебитами и малыми перепадами высот по длине русла;

Наличием рек с малыми дебитами и значительными перепадами высот;

Наличием большого количества искусственных водоемов (прудов) с регулируемым водосбросом небольшой высоты (2 - 10 м);

Значительной годовой неравномерностью дебита рек.

Указанные факторы осложняют требуют детального обоснования использования энергии рек. В области действует лишь одна ГЭС - Верхотурская установленной мощностью 7 МВт.

Однако научные разработки последних лет по совершенствованию энергетической техники для мини и микро ГЭС позволяют ставить вопрос о восстановлении заброшенных мини ГЭС области (В-Сысертская, Алапаевская, Афанасьевская, Ирбитская - 180 кВт, Речкаловская - 400 кВт и др.) и сооружении ряда новых мини и микро ГЭС /3,4/.

Возможные пункты строительства новых ГЭС на существующих гидротехнических сооружениях приведены в табл.5.


Таблица 5. Перечень гидротехнических сооружений с ожидаемым уровнем мощности выше 1000 кВт

В целом по области существующие гидротехнические сооружения позволяют использовать потенциал мини ГЭС на уровне ~ 200-250 МВт при величине капитальных вложений 10-15 т. руб/кВт. установленной мощности.

Использование потенциала микро ГЭС для рек, берущих начало вблизи 60-го градуса восточного меридиана (отроги Уральского хребта) может быть оценено на уровне от 10 до 50 МВт.

При КИУМ ГЭС на уровне = 0,30÷0,35, характерном для изменения водостока рек области годовое производство электроэнергии возможно в объёмах 300 - 500 млн. кВт. ч, что эквивалентно экономии 100-160 тыс. т. у. т. /год. На территории области имеются предприятия, осуществляющие выпуск оборудования для ГЭС малой мощность (Уралгидромаш, Уралэлектротяжмаш и др.).

Область характеризуется достаточно неравномерным распределением ветровых потоков по территории /5/. В табл.6 приведены данные по среднегодовым и среднемесячным скоростям ветра для ряда точек на территории.


Таблица 6.

К зонам высоких ветров могут быть отнесены вершины отрогов Уральского хребта (г. Благодать, г. Качканар, г. Магнитная и др.), где среднегодовые скорости ветра находятся на уровне (5,5 - 10) м/с и прилегающие к Свердловской области с севера области Северо-Сосьвинской возвышенности, где среднегодовая скорость ветра оценивается на уровне 6-12 м/с.

При указанных скоростных напорах ветра удельная мощность территорий составляет: от 1 МВт/кв.км (скорость ~ 3-4 м/с) до 4 МВт/кв.км (скорость ~ 8 м/с) КИУМ ВЭУ для гористой части территории области ожидается на уровне 0,4-0,5, что соответствует производству электроэнергии от 4 млн кВт. ч/км². год до 16 млн. кВт. ч/км². год.

Для ВЭС расположенной в заселенной равнинной части области при площади 1 км² (10 установок × 100 кВт) годовая экономия топлива составит от 1400 т. у. т. /год на одну ВЭС.

Для ВЭС расположенных на вершинах гор ~ 4000,0 т. у. т. /год.

При площади области ~ 194 тыс. кв.км и использовании под сооружение ВЭС только 10% горной части территории (~ 0,5%) возможная мощность ВЭС оценивается на уровне 200 МВт, с производством электроэнергии 0,6 - 0,8 млрд. кВт. ч/год при уровне капитальных вложений 20-30 тыс. руб. /кВт.

Указанное производство энергии эквивалентно экономии органического топлива в объёмах 0,2 - 0,3 млн. т. у. т. /год.

Целесообразно рассматривать возможность широкого использования ветронасосов в быту и в сельском хозяйстве.

Существующие технологии получения биогаза из отходов животноводства /6/ для Свердловской области позволяют сделать следующую оценку (табл.7).

Таблица 7

Что соответствует экономии органического топлива: ~ 370 тыс. т. у. т. /год.

Несмотря на кажущуюся незначительность этой экономии целесообразно сооружение биогазовых станций на площадках крупных хозяйств (табл.8).

Таблица 8.

Использование биогаза возможно, как для производства тепловой, так и электрической энергии. В последнем случае используются ДВС с генератором электроэнергии.

Запасы торфа на территории области оцениваются на уровне 7678 млн. тон 40% -влажности, что соответствует ~ 2000 млн. т. у. т.

Наибольшие запасы торфа сосредоточены в следующих районах (табл.9).

Таблица 9.

В Свердловской области добыча и использование торфа практически свернуты. Если в 1987 году его добывалось около 3,600 млн. т/год, то в 1999 добыча снизилась до 0,135 млн. т.

Использование торфа сопряжено с необходимостью совершенствования технологии его добычи, осушки, приготовления брикетов и полубрикетов, совершенствования технологий использования (включая газогенераторную технику).

Реально торфяные предприятия области способны при соответствующих условиях обеспечить замену на торф дров и привозного угля для частных потребителей и мелких котельных, а в перспективе и для ряда ведомственных ТЭЦ и ЭС АО "Свердловэнерго".

Возможные объёмы производства торфа в течение 5 лет могут составить не менее 1,5 млн. т. у. т. /год.

Ежегодные объёмы потребления топлива прямого использования, тепловой и электрической энергии в энергетике, промышленный и коммунально-бытовой сферах области достигают 30-35 млн. т. у. т.

Существующие технологии их использования, приводят к образованию больших количеств низкопотенциальных тепловых сбросов предприятий в окружающую среду через системы оборотного водоснабжения, вентиляции, с теплотой шлаков и золы, сбросных вод электростанций и пр. Энергетический потенциал сбросной теплоты достигает 10-15 млн. т. у. т. /год, т.е. составляет почти половину всего поступающего на территорию топлива.

Имеющийся в мире опыт использования сбросной теплоты при помощи тепловых насосов показывает, что не менее 30% этой энергии может быть возвращено в хозяйственный оборот при капитальных вложениях не более 30 тыс. руб. /кВт (тепл).

Для Свердловской области это соответствует ежегодной экономии 3-5 млн. т. у. т.

Объём производства древесины в Свердловской области составил в 1990 году около 10 млн. м³/год. На всех стадиях заготовки и переработки древесины в виде щепы, стружки, опила и т.п. образуется и практически не используется до 5 млн. м³/год, что эквивалентно около 3 млн. т. у. т. /год.

Использование данного энергетического потенциала возможно лишь при разработке технологий подготовки и использования отходов древесины например путём переработки их в термических газогенераторах или биореакторах.

Возможно прямое ожигание отходов в топках мини и микро ТЭЦ и в котлах с кипящим слоем для ЭС большой мощности.

В настоящее время объёмы лесозаготовки и лесопереработки снизились до ~ 2,50 млн. м³/год из них ~ 1,5 млн. м³/год для целей энергопотребления.

Общий потенциал нетрадиционных и возобновляемых источников энергии и нетрадиционных топлив представлен в табл.10.


Таблица 10.

1. Потенциал НИВИЭ области позволяет снизить потребление органического топлива до 5-8 млн. т. у. т. в год.

2. Анализ показывает, что полное использование потенциала НИВИЭ позволит обеспечить устойчивое энергообеспечение свыше 40% децентрализованных и удалённых потребителей.

3. При поддержке правительства области на территории развернуто производство и подготовка к внедрению установок ветроэнергетики (4, 16, 30 кВт), солнечных коллекторов, газогенераторной техники, оборудования малой гидроэнергетики.

4. Развертывание работ по НИВИЭ затруднено отсутствием правовой базы, стимулирующей их создание и внедрение.

Заключение

В настоящее время возобновляемые источники энергии (энергия рек, ветра, солнца, биомассы, тепла Земли) в энергобалансе России составляют 22%. Ведущую роль занимает большая гидроэнергетика (20%). При рассмотрении стратегии развития энергетики России необходимо учитывать, что, согласно данным Института мировых ресурсов и других международных организаций, запасов жидкого ископаемого топлива в России осталось на 1-2 поколения, угля и урана на 2-4 поколения жителей России.

Сегодня вклад ВИЭ в энергетический баланс России, несмотря на их огромный потенциал, незначителен. Основным препятствием развития этого направления является отсутствие законодательства по стимулированию возобновляемой энергетики и экономических механизмов его реализации, недостаток финансирования и комплексного подхода к решению этой проблемы: наука – производство - широкомасштабное использование.

Несмотря на то, что электроэнергия и тепло, получаемые от различных ВИЭ, сегодня, как правило, дороже, чем от традиционных источников, существует значительный рынок, где использование ВИЭ конкурентоспособно. Это прежде всего относится к регионам, где источником энергии является дорогое привозное топливо, рекреационным зонам, где на первый план выступает экологическая чистота ВИЭ, к ряду случаев, когда имеющиеся сооружения и объекты позволяют существенно снизить капитальные затраты для сооружаемых ВИЭ (пробуренные скважины для геотермального теплоснабжения, гидротехнические сооружения для малых ГЭС, большое количество различных отходов, подлежащих утилизации).

Состояние производственной базы для производства оборудования для различных ВИЭ в стране различно. Значительны успехи в создании крупных геотермальных электростанций на Камчатке. Отечественные предприятия сегодня производят малыми сериями конкурентоспособное оборудование для малых ГЭС, биогазовых установок небольшой мощности, фотопреобразователи, солнечные водонагревательные установки, малые ветроэнергетические установки, тепловые насосы средней мощности. При ограниченном платежеспособном спросе объем этих производств достаточен. Однако по мере экономического роста потребуется расширение производственной базы по выпуску оборудования для ВИЭ.

Отечественные разработки и производство крупных (мегаваттного класса) ветроэнергетических агрегатов существенно отстают от зарубежных фирм.

Список литературы

1. Арбузов Ю.Д., Евдокимов В.М., Зайцев С.В., Муругов В.П., Пузаков В.Н. "Возобновляемая энергия" "Вестник энергосбережения Южного Урала". июнь, 2002.

2. Борисова С., Темнова Е., Трошкова А., Щеклеин С.Е. Возможности гидроэнергетического потенциала Свердловской области для развития малой гидроэнергетики региона. Энерго - и ресурсосбережение. Нетрадиционные и возобновляемые источники энергии. Изд. УГТУ, 2001.

3. Данилов Н.И., Щеклеин С.Е., Велкин В.В., Шестак А.Н., Малетин А.П. Возобновляемая энергетика - альтернативная в электрификации удаленных районов. Эффективная энергетика, Изд. УГТУ, 2001.

4. Пицунова О.Н. Виды нетрадиционных возобновляемых источников энергии и технологии их освоения "Вестник энергосбережения Южного Урала". июнь, 2002

5. Шпильрайн Э.Э. Проблемы и перспективы возобновляемой энергии в России

6. Щеклеин С.Е. Роль нетрадиционных и возобновляемых источников энергии при реформировании электроэнергетического комплекса Свердловской области. "Энергетика региона", Екатеринбург, №2, 2001.

КОНСПЕКТ ЛЕКЦИЙ ДЛЯ СТУДЕНТОВ

ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

Часть 2

НЕТРАДИЦИОННЫЕ И ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Состояние и перспективы использования нетрадиционных и

Возобновляемых источников энергии

Традиционные и нетрадиционные источники энергии

При существующем уровне научно-технического прогресса энергопотребление может быть покрыто лишь за счет использования органических топлив (уголь, нефть, газ), гидроэнергии и атомной энергии на основе тепловых нейтронов. Однако, по результатам многочисленных исследований органическое топливо к 2020 г. может удовлетворить запросы мировой энергетики только частично. Остальная часть энергопотребности может быть удовлетворена за счет других источников энергии – нетрадиционных и возобновляемых.

Возобновляемые источники энергии – это источники на основе постоянно существующих или периодически возникающих в окружающей среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

Невозобновляемые источники энергии – это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников в отличие от возобновляемых находится в природе в связанном состоянии ивысвобождается в результате целенаправленных действий человека. В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН(1978 г.) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.



Запасы и динамика потребления энергоресурсов, политика России в области нетрадиционных и возобновляемых источников энергии

Потенциальные возможности нетрадиционных и возобновляемых источников энергии составляют, млрд. т.у.т в год:

Энергии Солнца – 2300;

Энергии ветра – 26,7;

Энергии биомассы – 10;

Тепла Земли – 40000;

Энергии малых рек – 360;

Энергии морей и океанов – 30;

Энергии вторичных низкопотенциальных источников тепла – 530.

Разведанные запасы местных месторождений угля, нефти и газа в России составляют 8,7 млрд. т.у.т., торфа – 10 млрд. т.у.т.

По имеющимся оценкам, технический потенциал ВИЭ в России составляет порядка 4,6 млрд. т у.т. в год, что превышает современный уровень энергопотребления России, составляющий около 1,2 млрд. т.у.т. в год. Экономический потенциал НВИЭ определен в 270 млн. т у.т. в год, что составляет около 25% от годового внутрироссийского потребления. В настоящее время экономический потенциал ВИЭ существенно увеличился в связи с подорожанием традиционного топлива и удешевлением оборудования возобновляемой энергетики за прошедшие годы.

Доля возобновляемой энергетики в производстве электроэнергии составила в 2002 г. около 0,5% от общего производства или 4,2 млрд. кВт·ч, а объем замещения органического топлива – около 1% от общего потребления первичной энергии или около 10 млн. т.у.т. в год. Положительным фактором для развития НВИЭ в России является начавшееся создание законодательной базы. Так, Законом «Об энергосбережении» в 1996 г. установлена правовая основа применения электрогенерирующих установок на НВИЭ, состоящая в праве независимых производителей этой электроэнергии на подсоединение к сетям энергоснабжающих организаций. Государственной Думой и Советом Федерации принят Закон «О государственной политике в сфере использования нетрадиционных возобновляемых источников энергии». Этот правовой акт устанавливает минимально допустимые в современных условиях экономические и организационные основы развития. Ведется разработка федеральной программы по использованию НВИЭ. Предполагается развивать производственные мощности оборудования нетрадиционной энергетики, на что будет выделено 1,315 млрд. рублей: 17% из федерального бюджета, остальные – из региональных и местных бюджетов.

В мае 2003 г. на рассмотрение правительства России вынесена «Энергетическая стратегия России на период до 2020г.». Одним из направлений данного документа является рассмотрение возможностей использования возобновляемых источников энергии.

Стратегическими целями использования возобновляемых источников энергии и местных видов топлива являются:

Сокращение потребления невозобновляемых топливно-энергетических ресурсов;

Снижение экологической нагрузки от топливно-энергетического комплекса;

Обеспечение децентрализованных потребителей и регионов с дальним и сезонным завозом топлива;

Снижение расходов на дальнепривозное топливо.

Необходимость развития возобновляемой энергетики определяется ее ролью в решении следующих проблем:

Обеспечение устойчивого тепло- и электроснабжения населения и производства в зонах децентрализованного энергоснабжения, в первую очередь в районах Крайнего Севера и приравненных к ним территориях. Объем завоза топлива в эти районы составляет около 7 млн. т нефтепродуктов и свыше 23 млн. т угля;

Обеспечение гарантированного минимума энергоснабжения населения и производства в зонах централизованного энергоснабжения, испытывающих дефицит энергии, предотвращение ущербов от аварийных и ограничительных отключений;

Снижение вредных выбросов от энергетических установок в городах и населенных пунктах со сложной экологической обстановкой, а также в местах массового отдыха населения.

В последнее время растет интерес к нетрадиционной энергетике у региональных АО-энерго и местных администраций.

Оценки показывают, что к 2010 г. может быть осуществлен ввод в действие около 1000 МВт электрических и 1200 МВт тепловых мощностей на базе возобновляемых источников энергии при соответствующей государственной поддержке.


СОЛНЕЧНАЯ ЭНЕРГЕТИКА.

СОЛНЕЧНЫЕ СИСТЕМЫ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ НА ОСНОВЕ

Крупнейшие солнечные электростанции

Кремер-Джанкшен-США-60.000кВт-1987г. - коллекторный

приёмник.

Деггет-США-45.000кВт-1985г. - коллекторный приёмник.

Борреро-Спрингс-США-15.000кВт-1985г. - фотогальванические преобразователи.

Солар-1-США-12.500кВт-1982г. - башенный преобразователь.

Корриза-Плейн-США-6.500кВт-1984г. - фотогальванические преобразователи.

Бет–Ха-аравах-Израиль-5.000кВт-1984г. - прудный приёмник.

Крымская-Украина-5.000кВт-1986г. - башенный приёмник.

БИОЭНЕРГЕТИКА. БИОМАССА КАК

ИСТОЧНИК ЭНЕРГИИ.

Биомасса – это органические соединения углерода. Энергия биомассы возникает в результате фотосинтеза под действием сол­нечного излучения, в процессе образования органических веществ и аккумулирования в них химической энергии.

Поток солнечной энергии, преобразуемый на Земле в результате фотосинтеза, составляет 250 кВт на человека, что эквивалентно 250000 крупных АЭС (по 6 млн. кВт каждая). Для сравнения – мощность электрических станций на планете составляет около 0,8кВт на человека.

В результате фотосинтеза образуются углеводы, содержащие углерод в соединениях с кислородом и водородом (например, глюкоза C 6 H 12 O 6 или сахароза C 12 H 22 O 11 ). В процессе соединения с кислородом при сгорании или гниении биомассы выделяется тепло. При сжигании биомассы в кислороде выход тепла составляет 16 МДж/кг или 4,4 кВт·час на 1 кг сухого веса.

Основными источниками биомассы являются:

· лесоразработки и отходы переработки древесины,

· сахарный тростник,

· зерновые и другие, продовольственные и технические культуры, продукция энергетического растениеводства,

· отходы животноводства (навоз),

· городские стоки, мусор (твердые бытовые отходы).

Переработка биомассы, связанная с извлечением энергии осуществляется термохимическими, биохимическими и агрохимическими способами. Термохимические способы – это прямое сжигание и пиролиз, биохимические – спиртовая ферментация и анаэробная переработка, агрохимические – экстракция топлив прямо от живых растений (например, получение каучука).

Сжигание биотоплива с получением тепла используется для приготовления пищи, обогрева жилищ, для сушки зерна, получения электроэнергии и т.д.

Приготовление пищи и сжигание топлива в традиционных, часто примитивных "устройствах" – неэффективно. Их К.П.Д. часто не превышает 5%. Велики потери из–за неполного сгорания, уноса тепла ветром, испарения из открытого котла и т. д. Процесс можно улучшить совершенствованием методов приготовления (например, паровые сковородки), уменьшением тепловых потерь (теплоизоляция печей, конструкция нагревателей), улучшением сгораемости топочных газов, применением простых и надёжных методов управления нагревателями. Применение древесного угля, принудительной подачи воздуха позволяет повысить эффективность плит и печей до 50%.

Другие направления по совершенствованию процесса сжигания биотоплива – это применение в качестве топлива печей биогаза, использование солнечных кухонь.

В этих процессах в качестве биотоплива широко применяется древесина. Древесину можно считать возобновляемым источником энергии только при условии, что скорость её прироста превышает скорость уничтожения.

Пиролиз (сухая перегонка) – это процессы нагрева или частичного сжигания органического сырья для получения производных топлив или химических соединений. Сырьём служит древесина, отходы биомассы, городской мусор, уголь. Продукты пиролиза – газы, смолы и масла, древесный уголь, зола. Разновидность пиролиза – газификация – предназначена для максимального получения газообразного топлива. Пиролиз осуществляется в газогенераторах. Схема газогенератора представлена на рисунке 3.1. Газогенератор состоит из следующих элементов:

1- печь, куда подается и частично сжигается при недостатке воздуха 2 перерабатываемая биомасса,

3- газопровод,

4- выход древесного угля,

5-биогаз от других печей,

6-сепаратор,

7-производные жидкости и летучие соединения (эфиры, фенолы, уксусная кислота, метанол и др.),

8-сушилка для сельскохозяйственной продукции,

9-обогрев помещений и приготовление пищи,

10-газгольдер,

11-крышка газгольдера,

12-трубопровод генераторного газа,

13-двигатель внутреннего сгорания,

14-электрический генератор.

Подаваемый материал предварительно сортируют для снижения негорючих примесей, подсушивают, измельчают. Температура в печи

Рис.3.1. Схема газогенератора

зависит от соотношения воздух – горючее. Проще всего управление установкой при температуре ниже 600ºС. При более высоких температурах - сложнее управление, но увеличивается содержание водорода в вырабатываемом газе.

Перегонка идёт в 4 стадии:

  • 100-120ºC подаваемый в газогенератор материал опускается вниз и освобождается от влаги,
  • 275ºC –отходящие газы в основном состоят из N 2 ,CO и CO 2 ; извлекается уксусная кислота и метанол,
  • 280-350ºC – начинается реакция выделения летучих химических веществ таких, как эфиры, фенолы и др.,
  • свыше 350 ºС – выделяются все типы летучих соединений, одновременно с образованием углекислого и угарного газа происходит увеличение образования водорода и метана CH 4 , часть углерода сохраняется в виде древесного угля, смешанного с золой.

Топливо, полученное при пиролизе более универсально, чем исходное, но уже имеет меньшую энергию сгорания. "Универсальность" топлива – это более широкий диапазон устройств – потребителей, меньшее загрязнение среды, удобство транспортировки, лучшая управляемость горением. В результате переработки получают твёрдый остаток, жидкости, газы.

Твёрдый остаток, древесный уголь, составляет 25-35% сухой биомассы. Он на 75-85% состоит из углерода, обладает теплотой сгорания 30 МДж/кг. Используется в качестве топлива с контролируемой чистотой, применяется в лаборатории, в промышленности, для выплавки стали (вместо кокса).

Жидкости – смолы, уксусная кислота, метанол, ацетон –30% от сухой биомассы. Они могут быть отделены или использованы вместе в качестве низкокачественного топлива с теплотой сгорания 22МДж/кг.

Газы – это древесный газ (синтетический газ, генераторный газ или водяной газ) – до 80% в газогенераторах. Газы состоят из азота, водорода, метана, углекислого газа и угарного газа. Они накапливаются в газгольдерах при давлении, близком к атмосферному (они не сжимаются). Используются в дизелях, карбюраторных двигателях.

Другие термохимические процессы: - гидрогенизация и каталитическая реакция между углеродом и окисью углерода.

Гидрогенизация – процесс нагревания измельчённой или переваренной биомассы до 600ºС при давлении около 50 атм (5 МПа). Получаемые при этом горючие газы метан и этан дают при сжигании 6 МДж на 1 кг сухого сырья.

Гидрогенизация с применением СО и пара аналогична предыдущему процессу, но нагревание производится в атмосфере СО до 400ºС. Извлекается синтетическая нефть, которую можно использовать как топливо.

Каталитическая реакция между Н 2 и СО при 330ºC и давлении 15 МПа даёт метиловый спирт (метанол)-ядовитую жидкость, которую можно использовать в качестве заменителя бензина с теплотой сгорания 23 МДж/кг.

Спиртовая ферментация (брожение) используется для получения этилового спирта (этанола) – С 2 Н 5 ОН. Этиловый (питьевой) спирт образуется из сахаров особыми микроорганизмами, дрожжами, в кислой среде. При концентрации спирта 10% микроорганизмы погибают. Поэтому дальнейшее повышение концентрации получается перегонкой (дистилляцией). В результате получают смесь-95%спирта + 5% воды. При брожении теряется 0,5% энергетического потенциала сахара. Необходимую для перегонки тепловую энергию получают, сжигая отходы биомассы.

Этиловый спирт получают из сахарного тростника, сахарной свёклы, крахмала. При получении спирта из сахарного тростника вначале отделяют сок для получения сахарозы. Оставшуюся патоку с содержанием сахара до 55% сбраживают и перерабатывают в спирт. Реакция превращения сахарозы в этанол в присутствии дрожжей:

При получении спирта из сахарной свёклы вначале получают сахар для сбраживания; далее процесс аналогичен.

Для получения спирта из растительного крахмала, например, из злаковых, его предварительно подвергают гидролизу на сахар.

Крупные молекулы крахмала разрушаются ферментами солода, содержащимися, например, в ячмене или при обработке его сильными кислотами при повышенном давлении. Важный вторичный продукт сбраживания - отходы используются в качестве корма для скота и удобрений.

Этиловый спирт – хорошее жидкое топливо. Он используется в чистом виде (95%) при небольшой переделке карбюратора или в смеси с бензином 1:10 (газохол). Газохол сейчас обычное топливо в Бразилии. Применяется оно и в США. При применении газохола увеличивается на 20% мощность двигателей, снижается загрязнение атмосферы по сравнению с применением тетраэтилсвинца.

Получение биогаза путём анаэробного сбраживания . В естественных условиях биомасса разлагается на элементарные соединения в условиях сырости, тепла, темноты в присутствии кислорода под действием бактерий, называемых аэробными. С участием этих бактерий углерод биомассы окисляется до двуокиси углерода (углекислого газа).

В замкнутых объёмах с недостатком кислорода развиваются анаэробные бактерии, которые способствуют созданию углекислого газа и метана. В анаэробных условиях происходит процесс «сбраживания». «Биогаз» - это смесь метана и углекислого газа. Его получают в биогазогенераторах . Реакция превращения сахарозы в метан в присутствии бактерий:

Реакция превращения целлюлозы в метан:

Эти реакции экзотермические. В процессе их протекания выделяется 1 МДж тепла на 1кг сухой массы сбраживаемого материала. Этого, однако, недостаточно для необходимого повышения температуры массы.

Анаэробное сбраживание и получение биогаза с последующим его использованием в качестве качественного топлива выгоднее, чем простое высушивание и сжигание исходного материала, так как только удаление 95% влаги при сушке требует до 40 МДж тепла на 1кг сухого остатка. Теплота сгорания сухого навоза составляет 12…15 МДж/кг. Кроме того, после анаэробной переработки навоз может быть использован как удобрение.

Получение биогаза – экономически выгодно, если биогазогенератор работает на переработке существующего потока отходов - (стоки канализационных систем, свиноферм и др.) без их специального сбора, например, в замкнутом экологическом цикле агропромышленного комплекса.

Сбраживание в биогазогенераторе может происходить при температуре 20…30ºС с участием псикрофилических бактерий с циклом сбраживания 14 суток. При подогреве до 35ºС в процессе участвуют мезофилические бактерии и процесс ускоряется до 7 суток. Для подогрева используется часть биогаза, получаемого в биогазогенераторе. При необходимости ускорения разложения биомассы без увеличения выхода биогаза массу подогревают до 55ºС, что соответствует термофилическому уровню анаэробных бактерий. В любом случае необходимо поддерживать в биогазогенераторе стабильные условия по температуре и подаче биомассы для выведения подходящих для данных условий популяций бактерий.. В тропиках сбраживание ведётся при 20-30ºС без дополнительного подогрева, с временным интервалом 14 дней. В средней полосе для сбраживания необходим дополнительный подогрев, например, с использованием части получаемого биогаза. При повышении температуры процесса до 35ºС, скорость реакции в биогазогенераторе удваивается.

Процесс сбраживания идет в три стадии, которые обеспечиваются собственными для каждой стадии бактериями:

1 стадия - расщепление нерастворимых материалов (целлюлоза, жиры, полисахариды) на углеводы и жирные кислоты в течение 1 суток при 20…25ºС,

2 стадия - образование уксусной и др. кислот в течение 1 суток,

3 стадия - образование метана, полное сбраживание массы с получением биогаза (70% метана и 30% углекислого газа) с примесью водорода и сероводорода в течение 14 суток.

Технологическая и электрическая схема биогазогенератора для условий умеренного климата для утилизации навоза животноводческого комплекса, использующего электроэнергию в качестве основного источника энергии представлена на рисунке 3.2. Здесь:

1- приемная емкость с мешалкой, куда поступает очищенный от соломы и других неактивных материалов навоз,

2- мешалка,

4- бак (metan tank) с мешалкой,

5- мешалка,

6- насос для перекачки навоза в баке с подогревом в зимнее время с помощью газового нагревателя,

7- газовый нагреватель,

8- насос для перекачки отработанного навоза в выходную емкость для отходов,

9- выходная емкость,

10- компрессор для перекачки получаемого биогаза в газгольдер,

11- водяной газгольдер,

12- двигатель внутреннего сгорания,

13- электрогенератор,

14- шины трансформаторной подстанции предприятия,

15- коммутирующие аппараты подстанции,

16- главный трансформатор подстанции предприятия,

17- приводные электродвигатели вытяжной и приточной вентиляции с калориферами для обогрева помещений, привода механизмов кормораздачи, скребков, а также лампы освещения.

Навоз помещают в накопитель, где он отделяется от несбраживаемых материалов. Далее масса медленно проходит через ёмкость, врытую в землю, где происходит сбраживание, а затем отработанная масса поступает в бак для отработанной массы, которая используется для удобрения. Давление газа в газгольдере создаётся тяжёлым металлическим газгольдером.

Теплота сгорания некоторых видов топлива :

  • бензин 47 МДж/кг или 34·10 - ³ МДж/л;
  • этиловый спирт С 2 Н 5 ОН 30 МДж/кг или 25·10 - ³ МДж/л;
  • метан СН 4 55 МДж/кг или 38·10 - ³ МДж/л;
  • метанол СН 3 ОН 23 МДж/кг или 18·10 - ³ МДж/л;
  • биогаз (50% СН 4 и 50% СО 2) 28 МДж/кг или 20·10 - ³ МДж/л;
  • генераторный газ 5-10 МДж/кг или (4-8)·10 - ³ МДж/л;
  • древесный уголь (кусковой) 32 МДж/кг;
  • коровий навоз 12 МДж/кг;
  • древесина сухая 16 МДж/кг.

Рис.4.2. Схема биогазогенератора.

ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ.

Внутренняя структура Земли, рис.4.1 содержит: 1- раскалённое внутреннее ядро, 2- наружное ядро, 3- мантию и 4- тонкую толщиной 30 км кору Земли.

Земная кора получает тепло от раскалённого до 4000ºС ядра, где происходят ядерные и химические реакции с выделением огромного количества тепла. Разность температур между внешней и внутренней поверхностями коры около 1000ºС. Кора состоит из твёрдых пород и имеет невысокую теплопроводность. Геотермальный поток 5 через неё в среднем 0,06Вт/м² при температурном градиенте 30ºС/км. Выход тепла через твёрдые породы суши и океанского дна происходит за счёт теплопроводности (геотермальное тепло) и в виде конвективных потоков расплавленной магмы или горячей воды.

В районах с повышенными градиентами температуры эти потоки составляют 10-20Вт/м² и там могут быть созданы геотермальные энергетические (электрические) станции (Гео ТЭС).

Температурный градиент повышается в зонах с плохо проводящими тепло или насыщенными водой породами. Особенно высокое тепловое взаимодействие мантии с корой наблюдается по границам материковых платформ. В этих районах велик потенциал геотермальной энергии. Градиент температуры достигает 100ºС/км. Это районы с повышенной сейсмичностью, с вулканами, гейзерами, горячими ключами. Такими районами являются: Камчатка в России, Калифорния (Сакраменто) в США, а также зоны в Новой Зеландии, Италии, Мексике, Японии, Филиппинах, Сальвадоре, Исландии и других странах.

Сведения о геотермальных структурах получают при геологической съёмке, проходке шахт, скважин (при глубоком бурении –6 км и более). Технология бурения скважин до 15 км остаётся такой же как и до 6 км, поэтому при строительстве Гео ТЭС эта проблема может считаться решённой.

Геотермальные районы подразделяют на 3 класса:

гипертермальные с температурным градиентом более 80ºС/км - расположены в зонах вблизи границ континентальных платформ –Тоскана в Италии;

полутермальные –40¸80ºС/км – расположены вдали от границ платформ, но связаны с аномалиями, например, глубокими естественными водоносными пластами или раздробленными сухими породами – район Парижа;

нормальные – менее 40ºС/км, где тепловые потоки составляют

Рис.4.1. Внутренняя структура Земли и поток геотермальной энергии

Рис.4.2. Использование потока геотермальной энергии

0,06 Вт/м². В этих районах извлечение геотермального тепла – пока нецелесообразно.

Тепло получается благодаря: (1)естественной гидротермальной циркуляции, при которой вода проникает в глубокие слои, нагревается, превращается в сухой пар, пароводяную смесь или просто нагревается и образует гейзеры, горячие источники, (2)искусственному перегреву, связанному с охлаждением застывающей лавы, (3)охлаждению сухих скальных пород. Сухие скальные породы в течении миллионов лет накапливали тепло. Отбор тепла от них возможен прокачкой воды через искусственно созданные разрывы, скважины и др.

Созданные Гео ТЭС работают на естественной гидротермальной циркуляции, а также на искусственном перегреве за счёт извлечения тепла из сухих скальных пород.

Геотермальная энергия обладает низкими термодинамическими свойствами. Это энергия низкого качества(35%) и низкой плотности(0,06Вт/м²), с низкой температурой теплоносителя. Наилучший способ её использования – комбинированное применение для обогрева и выработки электроэнергии. При потребности в тепле с температурой до 100ºС целесообразно её использовать только для обогрева, если температура теплоносителя ниже 150ºС. При температуре теплоносителя 300ºС и выше целесообразно её комбинированное использование. Тепло целесообразно использовать вблизи места добычи, для обогрева жилищ и промышленных зданий, особенно в зонах холодного климата. Такие геотермальные системы используются, например, в Исландии. Тепло также используется для обогрева теплиц, сушки пищевых продуктов и т.д. Применение геотермальной энергии определяется капитальными затратами на сооружение скважин. Их стоимость экспоненциально возрастает с увеличением глубины бурения.

Общее количество тепла, извлекаемого от теплоносителя, может быть увеличено за счёт повторной закачки в скважины, тем более, что нежелательно оставлять на поверхности эти сильно минерализованные воды по экологическим причинам. Геотермальные энергостанции располагаются в гипертермальных районах, рис.4.2, вблизи естественных гейзеров и пароводяных источников 1 с температурой воды и пара 200…280ºС и используют естественные выходы тепла 2 (энергостанция 3) и специально пробуренные скважины 4 (энергостанция 5).

Схема извлечения тепла из сухих горных пород включает нагнетательную 1 и водозаборную 2 скважины, рис.4.3.. Скала на глубине 5-7 км дробиться гидровзрывом с помощью холодной воды, нагнетаемой под давлением в скважину. После предварительного дробления пород вода нагнетается через нагнетательную скважину, фильтруется через скальные породы на глубине 5 км при tº=250ºС, тёплая вода возвращается на поверхность через водозаборную скважину.

Рис.4.3. Схема извлечения тепла из сухих горных пород

Рис.4.4.Использование геотермальной энергии для производства электроэнергии в тепловом двигателе с одним рабочим телом (с

водой или фреоном)

Использование геотермальной энергии для производства электроэнергии может быть произведено по различным схемам:

· Турбинный цикл с одним рабочим телом с водой или хладоном показан на рис.4.4, где: П- теплообменник (парогенератор), где геотермальное тепло передается хладону, нагревает и испаряет его, Т- турбина, Г-генератор, К- конденсатор, Н- насос. При использовании низкотемпературного геотермального источника для приведения в действие турбины вместо воды применяют жидкости с более низкой температурой парообразования, например, хладон или аммиак. Особые трудности возникают с теплообменниками из–за высокой концентрации химических веществ в воде из скважин.

· Схема прямого парового цикла , рис.4.5, содержит: пароводяной сепаратор- ПС, редуктор- Р, Т- турбину, Г-генератор, К- конденсатор, Н- насос. Вода с паром от геотермального источника подается в пароводяной сепаратор, где пар отделяется от воды и поступает в турбину. Вода возвращается под землю. Отработанный в турбине пар конденсируется, и конденсат также закачивается под землю.

Крупнейшие геотермальные электростанции :

ЭНЕРГИЯ ОКЕАНОВ.

Энергия океанов – это энергия волн, энергия приливов и тепловая энергия воды.

Энергия волн.

Мощность, переносимая волнами на глубокой воде, пропорциональна квадрату их амплитуды и периоду. Длиннопериодные волны (Т≈10 с) с большой амплитудой (А≈2 м) позволяют снимать с единицы длины гребня до 50 кВт/м.

Проекты использования энергии волн разрабатываются в Японии, Великобритании, в Скандинавских странах. Разрабатываются объекты с единичными модулями 1000 кВт с длиной вдоль фронта волны около 50 м. Такие установки могут быть конкурентоспособны с дизель–генераторами при электроснабжении удаленных посёлков на островах.

Сложности создания волновых энергоустановок обусловлены нерегулярностью волн по амплитуде, частоте, направлению, возможностью 100-кратных перегрузок при штормах и ураганах, расположением на глубокой воде, вдали от берега, сложностью согласования низкой частоты волн (0,1Гц) и высокой частоты электрического генератора (50 Гц).

Волновая энергоустановка 1, использующая колеблющийся водяной столб, рис.5.1, размещается на грунте. Она состоит из нижней вертикальной камеры 2, сообщающейся с морем и имеющей два отверстия с клапанами 4 и 7, и воздушной камеры 3 с двумя отверстиями с клапанами 5 и 6, с диффузором и турбиной 8,соединенной валом с электрическим генератором 9.

При набегании волны на частично погруженную полость, открытую под водой, столб воды в полости колеблется, и изменяет давление воздуха над жидкостью. С помощью клапанов воздушный поток регулируется так, что проходит через турбину в одном направлении. При набегании волны воздушный поток из нижней камеры под давлением проходит через клапан 4 в верхнюю камеру, через диффузор, приводит во вращение турбину и выходит наружу через клапан 5. При сбегании волны клапаны 4 и 5 закрыты. Под действием разрежения, возникающего в нижней камере, воздух засасывается снаружи в верхнюю камеру, проходит через диффузор в прежнем направлении и через клапан 7 проходит в нижнюю камеру. На этом принципе действуют энергоустановки, внедрённые в Японии, Великобритании, Норвегии (500 кВт).

Рис.5.1. Волновая энергоустановка

Возможны другие конструкции энергоустановок, например, подводное устройство, которое состоит из плавучего корпуса – поплавка, закреплённого под водой на опорах, установленных на

грунте. Под воздействием подповерхностного движения вод он совершает колебательные движения, которые преобразуются в движение поршневого насоса. Жидкость подаётся на генераторную станцию по трубопроводам.

Энергия приливов .

Приливные колебания уровня в океанах происходят периодически: суточные с периодом 24 часа 50 минут и полусуточные с периодом 12 часов 25 минут. Разность уровней самого высокого и самого низкого – это высота прилива. Она колеблется от 0,5 до 10-11 метров. Во время приливов и отливов возникают приливные течения, скорость которых в проливах между островами достигает 4-5 м/с. Причиной возникновения приливов является гравитационное взаимодействие Земли 1 с Луной 2 и Солнцем, рис.5.2. Гравитационные же силы удерживают воду на поверхности вращающейся Земли. Плоскость вращения Луны относительно Земли имеет наклон относительно плоскости эклектики (в которой Земля вращается относительно Солнца) и дважды в течение солнечных суток Луна проходит через экваториальную плоскость.

Рис.5.2. Возникновение приливов

Если Луна находится в экваториальной плоскости Земли, океанские воды втягиваются в пики 3 в точках – максимально приближенной и удаленной от Луны. В ближайшей к луне точке действует увеличенная сила лунного притяжения и уменьшенная центробежная сила, в наиболее удаленной точке- уменьшенная сила лунного притяжения и увеличенная центробежная сила.

Это полусуточные приливы. Они наблюдаются в любой точке два раза в сутки. Обычно Луна не находится в экваториальной плоскости Земли. Поэтому приливы в этой точке возникают также 1 раз в сутки. Это суточные приливы.

На величину возникающих приливов оказывает влияние меняющееся расстояние между Луной и Землёй, совпадение или несовпадение Лунных и Солнечных приливов, место, в котором наблюдается прилив, открытый океан или вблизи побережья, в устьях рек и прочие.

Приливная электростанция (ПЭС) может быть расположена непосредственно в приливном течении, рис.5.3.

Рис.5.3. Приливная энергоустановка

Другой вариант расположения ПЭС – бассейн, отделённый от океана дамбой или плотиной. Во время прилива вода в бассейне поднимается на максимальную высоту. При отливе масса воды пропускается через турбину, вырабатывая электроэнергию.

Развитие приливной энергетики возможно в местах с большими высотами приливов и большими потенциалами приливной энергии, например, на побережье Северной Америки (9…11м), в западной Африке 5м, на побережье Белого, Баренцева морей, во Франции (Бретань), Великобритании (Северн), Ирландии, Австралии. Приливные энергоустановки характеризуются большими капитальными затратами. Капитальные затраты на строительство ПЭС могут быть снижены решением комплексных хозяйственных задач: одновременным строительством дорог вдоль дамб, улучшением условий судоходства, снижением расхода дорогого дизельного топлива и так далее.

Крупнейшие приливные электростанции:

Ла Ранс – Франция – 240.000 кВт – 24 турбины – 1967г.

Аннаполис – Канада – 20.000 кВт – 1 турбина – 1984г.

Джянгксия – Китай – 3.900 кВт – 6 турбин – 1986г.

Байсхакоу – Китай – 640 кВт – 4 турбины – 1985г.

Кислогубская – Россия – 400 кВт – 1 турбина – 1968г.

ГИДРОЭНЕРГЕТИКА

Гидроэнергетика использует энергию падающей воды. Эта энергия преобразуется в механическую энергию в гидротурбине и в электрическую в гидрогенераторе. Мощность, отдаваемая падающей водой турбине:

(6.1)

где:r=10 3 кг/м 3 - плотность воды,

g=9,81 м/с 2 - ускорение силы тяжести,

Расход воды, м 3 /с,

Высота падения воды, м.

Потери при этом преобразовании невелики и затрачиваются только на удаление воды из турбины. К.П.Д. современных гидротурбин достигает 90%.

При определении гидроэнергетического потенциала местности, района, области годовая выработка электроэнергии ГЭС может составить

(6.2)

(6.3)

Условиями целесообразности использования гидроэнергии в данной местности являются:

  • достаточно большой годовой сток и перепад высот не менее 250…300м; при меньшем перепаде высот нерационально возрастают площади залива территории при создании водохранилищ,
  • годовой уровень осадков не менее 0,4 м,
  • равномерное распределением осадков в течение года,

подходящий рельеф местности и наличие мест для водохранилищ.

Гидротурбины разделяются на реактивные и активные.

Рабочее колесо реактивной турбины полностью погружено в воду и вращается за счет разности давлений до и после колеса, рис.6.1. Здесь: 1- русло реки, 2- естественный водопад, 3- решетка, 4- водовод (канал), 5- направляющий аппарат, 6- гидротурбина, 7- гидрогенератор в здании ГЭС.

Рис.6.1. Деривационная гидроэлектростанция с реактивной гидротурбиной вблизи естественного водопада.

Реактивная турбина может работать при реверсировании ге

Бахматов Дмитрий

класс 10, МОУ СОШ №8 Советского района г. Волгограда

Попова Нина Ивановна

научный руководитель, педагог высшей категории, преподаватель физики, МОУ СОШ № 8 г. Волгограда

Вступление

Нетрадиционными источниками энергии являются солнце, ветер, океанические приливы, тепло земных глубин. Эти варианты получения энергии как дополнительной используются в последнее время всё чаще. Многие учёные убеждены, что к 2030-2050 гг. нетрадиционные (возобновляемые) источники энергии будут основными, а традиционные потеряют своё значение.

Цель статьи: познакомиться с нетрадиционными источниками энергии, их достоинствами и недостатками, а также выяснить для себя перспективы внедрения возобновляемых источников энергии на территории Волгоградской области.

Сегодня подавляющее большинство людей знают о том, что запасы углеводородов не беспредельны, что органическое топливо нужно беречь. Вот почему изучение и использование нетрадиционных источников энергии является актуальным. Многие страны довольно широко используют нетрадиционные источники. Уже несколько лет в Волгоградской области внедряются энергосберегающие установки с использованием энергии ветра, солнца, гидроресурсов, отходов сельского хозяйства, так как этому способствуют географическое положение и климатические условия нашего региона.

Солнечная энергия

Солнечная энергия неисчерпаема. Существует несколько вариантов её использования. При физических способах усвоения солнечной энергии используют гальванические батареи, которые поглощают её и преобразуют в тепловую или электрическую энергию, либо системы зеркал, отражающих лучи солнца и направляющих их на заполненные маслом трубы, которые концентрируют солнечное тепло. Волгоградская область находится на юге нашей страны, значит, в перспективе нехватку энергии без проблем можно компенсировать за счёт солнечной энергии. А вот жителям Крайнего Севера, Сибири, Якутии и т. д. в этом плане сложнее. Я считаю, что в этой местности как раз можно использовать солнечные коллекторы для обеспечения населения электроэнергией, особенно летом. Использование солнечных коллекторов может частично решить экологическую проблему и использовать энергию для бытовых нужд (подогрев воды, обогрев теплиц и т. д.). Наиболее успешно солнечная энергетика развивается в Японии и Израиле, где за её счёт почти полностью покрывается потребность в отоплении жилья и подогреве воды для бытовых нужд. «Совместный алжирско-японский проект SaharaSolarBreederобещает превратить пустыню Сахара в чащу солнечных батарей, способных к 2050 г. обеспечить до половины мировых потребностей в электроэнергии» . В принципе солнечную энергию можно использовать в любом уголке земли.

Одним из наиболее перспективных источников энергии на Земле является биомасса, так как она доступна в неограниченных количествах. Биомасса делится на первичную и вторичную.

Древесину, отходы сельскохозяйственного производства, высушенные водоросли, которые перерабатываются в спирт и т. д., затем используют для получения энергии. Биологическим вариантом использования солнечной энергии является и получение биогаза из навоза, который сбраживается без доступа воздуха. В настоящее время в мире накопилось много мусора, который ухудшает состояние окружающей среды. Мусор губительно влияет на людей, животных, птиц, на всё живое на земле. Такие свалки находятся вблизи моего пос. Горьковский Советского района г. Волгограда: за железнодорожной горкой вдоль Ростовской трассы перед селом Рогачик, в балке с. Песчанка, на ст. Бирюзовая и т. д. Много стихийных свалок образовалось вдоль балок устья реки Царица. Подобных свалок огромное количество во всех как крупных, так и мелких городах и селениях нашей страны. В связи с этим, я думаю, что нужно развивать энергетику с использованием вторичной биомассы, чтобы предотвратить загрязнение окружающей среды. У меня появилась мысль исследовать свалки посёлка, выяснить, сколько мусора вывозится и сколько его нужно, чтобы обеспечить мой посёлок электроэнергией, полученной от сжигания мусора. Мои расчеты показали, что пос. Горьковский сможет себя обеспечить энергией биомассы за счёт своего же мусора. Причём с биомассой практически весь мусор будет сжигаться, и отходов почти нет. Так будет решена проблема уничтожения мусора и обеспечения посёлка электроэнергией при минимальных затратах. Прекрасно можно решить эту проблему и в других городах, что уже решается успешно в западных странах. В ходе исследования мною был проведён небольшой социологический опрос среди населения пос. Горьковский, результаты которого показали, что большинство участников опроса положительно относятся к использованию энергии биомассы.

Преимущества биоэнергии

Это возобновляемая энергия, которая не увеличивает концентрацию углекислого газа в атмосфере, решает проблему использования отходов (мусора), а, значит, помогает улучшить экологию и сделать мир чище.

Солнечную радиацию при помощи гелиоустановок преобразуют в тепловую или электрическую энергию, удобную для практического применения. В южных районах нашей страны созданы десятки солнечных установок и систем.

Достоинства солнечной энергетики

Достоинства солнечной энергетики заключаются в общедоступности и неисчерпаемости источника, в полной безопасности для окружающей среды, это экологически чистый источник энергии, что очень важно именно теперь.

Недостатки солнечной энергетики

Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местах среднее количество солнечных дней в году может различаться очень сильно. Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках.

Использование энергии ветра

Человечество научилось использовать энергию ветра на ранней стадии своего развития. Ветряные электростанции производят электроэнергию только тогда, когда дует достаточно сильный ветер. Современный ветряк - сложное устройство. В нём запрограммирована работа в двух режимах - слабого и сильного ветра и остановка двигателя, если ветер станет очень сильным. Недостатком ветряных двигателей являются шумы, которые производят лопасти пропеллера во время вращения. Если ветряк мощный, то шумовое загрязнение делает опасным длительное пребывание людей в зоне работы установки. Наиболее оправданы небольшие ветряки для обеспечения дешевой и экологически безопасной электроэнергией отдельных ферм, дачных участков. К числу передовых стран по использованию энергии ветра относятся: Германия, Дания, Испания, США. В России за последние 5 лет построено несколько ветроэнергетических установок: в Башкирии, в Калининградской области, на Командорских островах, в Мурманске. Перспективно использование ветроустановок в Калмыцких степях, граничащих с Волгоградской областью, так как там ветры дуют, как правило, постоянно и только в одном направлении. В настоящее время там довольно широко используются ветроустановки для обеспечения электроэнергией небольших населённых пунктов Колмыкии. По окраинам Волгограда тоже расположены ветряки местного назначения. Автономные ветроэлектроустановки появились в удалённом от электрических сетей пос. Осипово Калачёвского района, на чабанских точках Волгоградской области. Обсуждается проект первого в России ветропарка мощностью 1 ГВт, который будет построен в Волгоградской области. Общая мощность ветроагрегатов в России превысила 10 МВт.Простейший способ использования энергии ветра впрок состоит в том, что ветряное колесо движет насос, который накапливает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. «Особенно перспективно развитие ветроэнергетики в комплексе с другими возобновляемыми источниками для энергоснабжения изолированных населённых пунктов, удалённых от других энергоисточников» .

Недостатки ветровой энергетики

Прежде всего, ветроустановки неблагоприятно влияют на работу телевизионной сети. Другая особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт.

Достоинства ветровой энергетики

Отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и т. д. Возможность преобразования в различные виды энергии (механическую, тепловую, электрическую). Непредсказуемые изменения скорости ветра в течение суток и сезона.

Приливные электростанции (ПЭС)

«За счёт использования энергии приливов в России можно покрывать более 25 % текущего энергопотребления страны» .Для выработки электроэнергии электростанции такого типа используют энергию прилива. Первая такая электростанция (Паужетская) мощностью 5 МВт была построена на Камчатке. Для устройства простейшей приливной электростанции нужен бассейн, перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены гидротурбины, которые вращают генератор. По принципу действия гидравлические турбины подразделяют на: активные и реактивные; по конструкции - на вертикальные и горизонтальные. Мощность гидрогенераторов от нескольких десятков до нескольких сотен МВт. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. В России c 1968 года действует «экспериментальная» ПЭС в Кислой губе на побережье Баренцева моря мощностью 0,4 МВт. Это первая и пока единственная приливная электростанция в России. В 2006 году на станции был установлен опытный образец наплавного блока, на котором расположен оригинальный гидроагрегат ОГА-5 мощностью 1,5 МВт.«Начиная с 1966 года, два французских города полностью удовлетворяют свои потребности в электроэнергии за счёт приливных электростанций» . В Урюпинском районе Волгоградской области для освещения наплавного моста через Хопёр была построена мини-ГЭС волнового типа, работающая на энергии течения воды. Наличие Волги, Дона и малых рек диктует грамотное использование гидроресурсов Волгоградской области.

Недостатки приливных электростанций

Они нарушают нормальный обмен соленой и пресной воды и тем самым - условия жизни морской флоры и фауны. Влияют они и на климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения. Морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.

Достоинства приливных электростанций

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Не загрязняет атмосферу. Дешёвая и возобновляемая энергия. Сокращает уровень добычи, транспортировки и сжигания органического топлива.

Использование геотермальных источников

В этом случае подразумевается использование тепла земных глубин (глубинных горячих источников). Это тепло можно использовать практически в любом районе, но затраты окупаются только там, где горячие воды приближены к поверхности земной коры. Это районы активной вулканической деятельности и гейзеров, например, Камчатка, Курилы, острова Японского архипелага, Исландия, Новая Зеландия.Источники геотермальной энергии могут быть двух типов. Первый тип - это подземные бассейны естественных теплоносителей - горячей воды (гидротермальные источники), или пара (паротермальные источники), или пароводяной смеси. По существу, это непосредственно готовые к использованию «подземные котлы», откуда воду или пар можно добыть с помощью обычных буровых скважин. Второй тип - это тепло горячих горных пород. Это даёт возможность получить пар или перегретую воду для дальнейшего использования в энергетических целях. Но в обоих вариантах использования главный недостаток заключается в очень слабой концентрации геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования.

Преимущества геотермальных источников

Во-первых, их запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива. Считаю, что эта цифра в последнее время изменилась в сторону увеличения. Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. А это не так уж и мало.

Недостатки геотермальных источников

Главная проблема заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности, так как эти вещества оказывают губительное действие на всё живое на земле.

Заключение

Я пришёл к выводу, что нетрадиционную энергетику необходимо внедрять в жизнь. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы использования энергии. Потребление электроэнергии - важный показатель жизненного уровня. Трудно переоценить значение и перспективы использования возобновляемых источников энергии в современном мире. Пока у нас есть солнечный свет, ветер и вода, у нас будет доступ к мощной энергии, заключённой в этих источниках. Чистая энергия солнца, ветра и воды - фундамент энергетики будущего, энергетики, основанной на ничтожно малых выбросах. Необходимо, чтобы государствам стало более выгодно использовать энергию чистых источников. Сейчас начинается новый этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, а заботился об охране уже сильно поврежденной биосферы. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию. Моё поколение должно быть готово к практическому использованию возобновляемых источников энергии.

Список литературы:

  1. Аркуша М.И. Элективный курс «Энергетика и окружающая среда», 11 класс. - Волгоград: 2010 г.
  2. Калашников Н.П. «Альтернативные источники энергии» М.: Знание 2008 г.
  3. Кондаков А.М. Альтернативные источники энергии - География в школе. 4/88 - М.: Педагогика. 2008 г.
  4. Кононов Ю.Д. Энергетика и экономика. Проблемы перехода к новым источникам энергии. - М.: Наука, 2009 г.
  5. Ревелль П., Ревелль Ч. «Энергетические проблемы человечества» Мир, 2005 г.
  6. Физика № 7 2011 г. Изд.дом Первое сентября
  7. Экология и право (Возобновляемая энергетика) г. СПб. 2008 г.
  8. Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. - М.: Энергоатомиздат. 2005 г.
  9. Энергия и окружающая среда (учебное пособие для ср. школы) г. СПб. 2008 г.