Возобновляемые источники энер­гии. Примеры использования возобновляемой энергии

Лекиця 4

Альтернативная энергетика.

Проф.И.Хузмиев

Общие положения.

Возобновляемые источники энергии (ВИЭ)- это солнечное излучение, энергия ветра, энергия малых рек и водотоков, приливов, волн, энергия биомассы (дрова, бытовые и сельскохозяйственные отходы, отходы животноводства, птицеводства, лесной, деревообрабатывающей и целлюлозно-бумажной промышленности, лесозаготовок), геотермальная энергия, малых рек и водотоков, приливов, волн, геотермальная энергия, а также рассеянная тепловая энергия (тепло воздуха, воды океанов, морей и водоёмов) (Рис.2.1.)

Рис.2.1. Мощность возобновляемых источников энергии, поступающих на землю и направления их использования.(степень, означает 11 )

: http://user.ospu.odessa.ua/~shev/emd_m/nie/doklad.htm

Массовое использование возобновляемых и нетрадиционных источников энергии (Таблица 2.1.) являетсяодним из способов решения энергетической, экологической и продовольственной проблем, которые сегодня стоят перед всем мировым сообществом (таблица 2.2.).Их использование необходимо рассматривать с позиций системного подхода, одно из важнейших требований которого заключается в рассмотрении технических систем во времени (жизненный цикл) и в пространстве (внешняя среда).

Способы использования возобновляемых источников энергии

Таблица 2.1.

Роль ВИЭ в решении трёх глобальных проблем Таблица 2.2.
Вид ресурсов или установок Энергетика Экология Продовольствие
Ветроустановки + + +
Малые и микроГЭС + + +
Солнечные тепловые установки + + +
Солнечные фотоэлектрические установки + + +
Геотермальные электрические станции + +/-
Геотермальные тепловые установки + +/- +
Биомасса. Сжигание твёрдых бытовых отходов + +/-
Биомасса. Сжигание сельскохозяйственных отходов, отходов лесозаготовок и лесопереработок + +/- +
Биомасса. Биоэнергетическая переработка отходов + + +
Биомасса. Газификация + +
Установки по утилизации низкопотенциального тепла + +
Биомасса. Получение жидкого топлива + + +

Положительное влияние;



Отрицательное влияние;

0 отсутствие влияния.

Под жизненным циклом обычно понимается структура процесса разработки, производства, эксплуатации. Он включает следующие стадии:

Формирование требований к системе;

Проектирование;

Изготовление, испытание и доводку опытного образца;

Серийное производство;

Эксплуатация;

Модернизация;

Первые три стадии называют внешним проектированием или макропроектированием. Здесь определяются: цели системы, определяются граничные условия, исследуются свойства внешней среды, механизмы и параметры системы, ее количественные характеристики и связи и как результат формулируется техническое задание на разработку проекта. Например, рассмотрим проблему энергоснабжения удаленных и мобильных потребителей, которым необходимо энергоснабжение, но в силу различных причин (удаленность, трудности рельефа и т.д.) оно затруднено или невозможно. Проблемы энергоснабжения таких потребителей решаются несколькими путями с помощью:

Различных видов классического топлива;

Энергии, запасенной в химических процессах;

Возобновляемых, нетрадиционных источников энергии и их комбинацией;

Использование нетрадиционных решений для обеспечения энергией отдельных потребителей позволит повысить социально-культурный уровень жизни работников, снизить издержки производства, повысить надежность и качество энергоснабжения на базе местных ресурсов, снизить антропогенное воздействие на окружающую среду. Поэтому для указанных выше потребителей необходимо активизировать строительство малых и микро ГЭС, использование энергии ветра, солнца, геотермальных и биоэнергетических источников. Все они обладают своими преимуществами и недостатками (Таблица 2.3.).

Сравнение ВИЭ с централизованными источниками

Таблица 2.3..

Источник Стоимость Единицы Стоимость ед. уст. мощности Уд. показ., масса на Надежность электро- снабжения Квалифик. обслуж. Эколог.
энергии произв. Энергии Ед. уст. Мощности персонала опасность
1. Невозобновляемые Высокая Средняя Высокая Высокая Высокая Высокая
2. Химические Высокая Высокая Высокая Высокая Высокая Высокая
3. Возобновля-емые Низкая Высокая Средняя Средняя Низкая Низкая
4. Малая гидроэнерг. Низкая Средняя Средняя Высокая Низкая Низкая

Особый интерес возобновляемые источники энергии представляют для потребителей, расположенных в отдаленных местах, где население в основном занимается сельскохозяйственным производством (Таблица 2.4.). Классические системы энергоснабжения нуждаются в постоянной доставке к местам потребления дорогого жидкого топлива стоимостью с учетом доставки около 2$ за 1 литр, строительства линии электропередачи стоимостью более 20 тыс.$ за 1км и возведение электростанций при цене ориентировочно 1000$ за 1 кВт установленной мощности. Нетрадиционные решения же, основанные на первичных источниках энергии, имеющихся на месте потребления, хорошо вписываются в программы сбалансированного развития отдаленных регионов.

Потребители энергии в домашнем хозяйстве

Таблица 2.4..

Бытовые потребители. Технологические потребители.
Приготовление пищи, Микроклимат в технологических помещениях
Отопление и кондиционирование Орошение и водоснабжение
Водоснабжение и водоотведение Кормоприготовление
Освещение, Уход за животными, лечение
Нагрев воды для бытовых целей, Вакцинация
Радио, телевидение, связь, Получение продукции в животноводстве и аквакультуре
Энергоснабжение бытовых процессов Уборка и утилизация отходов
(уборка, мойка посуды, стирка, шитье Технологии в растениеводстве
И т.д.), Транспортные операции
Санитарно-гигиенические Сушка, первичная обработка и хранение продукции
Мероприятия, Технологии строительства

Основной целью развития нетрадиционной энергетики должно быть рациональное использование природных ресурсов, в том числе и энергетических, с сохранением экологического равновесия и социальной стабильности. При этом должны решаться следующие задачи:

Повышение уровня жизни населения с помощью автономных систем энергоснабжения на базе возобновляемых источников энергии,

Снижение потребности в дровах, замедление процесса сведения растительного покрова, повышение эффективности землепользования,

Сокращения импорта нефтепродуктов и развитие собственной энергетической базы,

Стабилизация цен на энергоносители и обеспечение бесперебойного энергоснабжения,

Подготовка квалифицированного персонала в области производства и потребления энергоресурсов и их эффективного использования.

Возобновляемые источники энергии - практически неисчерпаемы и всегда доступны благодаря быстрому распространению современных технологий. Их использование соответствует стратегии использования различных энергетических источников. Возобновляемые ресурсы являются общепризнанным способом защиты экономики от ценовых колебаний и будущих расходов по защите окружающей среды. Технологии, основанные на использовании возобновляемых источников энергии, являются экологически чистыми из-за отсутствия выбросов загрязняющих веществ в атмосферу. Их применение не вызывает образование парникового эффекта и, соответственно, связанных с ним климатических изменений, и не приводит к образованию радиоактивных отходов.

Использование ВИЭ позволяет:

  • Повысить энергетическую безопасность стран, зависящих от поставок углеводородного сырья. Использования ВИЭ является альтернативой энергоснабжению в условиях роста цен на нефть и природный газ.
  • Улучшить снизить эмиссию парниковых газов, в соответствии с Киотским протоколом и улучшить экологическое состояние окружающей среды.
  • Создать новые образцы высокоэффективного конкурентного в море энергетического оборудования
  • Сохранить запасы имеющегося энергетического сырья
  • Увеличить ресурсы углеводородов для технологического применения

Применение ВИЭ тормозится по следующим причинам:

· Отсутствие необходимых Законов и нормативных актов по развитию и поощрению потребителей и бизнесменов по применению ВИЭ. Отсутствие государственных органов управления по управлению процессами внедрения ВИЭ.

· Низкий платежеспособный спрос населения и организаций. Многие субъекты РФ - дотационные, нет экономических стимулов для вложения инвестиций (налоговые льготы, льготные кредиты), отсутствие утвержденной федеральной целевой программы, Отсутствие механизмов финансирования и возврата вложенных средств, недостаточный уровень экономических знаний организаций, принимающих решения.

· Отсутствие по некоторым видам ВИЭ готовых систем энергоснабжения, низкий уровень стандартизации и сертификации оборудования, неразвитость инфраструктуры, отсутствие обслуживающего персонала, недостаточный объём научно-технических и технологических разработок, недостаточный уровень технических знаний организаций, принимающих решения.

· В связи с тем, что Россия богата энергоресурсами, потребители относятся к ним как к нечто бесконечному и общедоступному. Этому также способствует их относительная дешевизна по сравнению с мировыми ценами.

· Неосведомленность населения, руководителей и общественности о возможностях ВИЭ. Отсутствие пропаганды в средствах массовой информации о свойствах ВИЭ и примеров их использования..

Наше будущее в значительной степени зависит от применения технологических инноваций. Возобновляемые источники энергии смогут в течение будущих десятилетий влиять на изменение общества в целом. Согласно прогнозам значение и доля возобновляемых источников энергии в общем процессе получения энергии будет возрастать. Эти технологии не только сокращают глобальную эмиссию СО 2 , но и придают необходимую гибкость процессу энергопроизводства, делая его менее зависимым от ограниченных запасов ископаемого топлива. По единому мнению экспертов в течение некоторого периода времени гидроэнергетика и биомасса будут доминировать над другими видами возобновляемых источников энергии. Однако, в ХХI веке первенство на энергорынке будет принадлежать ветроэнергетике и солнечной энергетике, которые сейчас активно развиваются. На современном этапе ветроэнергетика является самой быстрорастущей отраслью производства электроэнергии. В некоторых регионах уже сегодня ветроэнергетика конкурирует с традиционной энергетикой, основанной на использовании ископаемых видов топлива. В конце 2002 года установленная мощность ветростанций во всем мире превысила 30000 МВт. В то же время очевиден явный рост интереса во всем мире к солнечным электростанциям, хотя ее сегодняшняя себестоимость в два –три раза выше себестоимости традиционной энергетики. Фотоэлектричество особенно привлекательно для удаленных областей, не имеющих подключения к общей энергосистеме. Передовая тонкоплёночная технология, применяемая для производства фотоэлектрических батарей активно внедряется в крупномасштабное коммерческое производство.

Такие большие энергокомпании, как Энрон, Шелл и Бритиш Петролеум за последнее время много инвестировали в развитие фото и ветроэнергетики. Это является одним из самых убедительных фактов перспективного будущего возобновляемой энергетики. Большие инвестиции со стороны ведущих мировых энергокомпаний планируются также и в развитие других видов ВИЭ. Одним из наиболее перспективных рынков применения ВИЭ в ближайшие 20 лет во всем мире станут развивающиеся страны, испытывающие сегодня проблемы с нехваткой энергии. Для многих стран привлекательным является мобильный характер этих технологий. Установки, работающие на ВИЭ, можно разместить близко к пользователям. Кроме того, их монтаж быстрее и дешевле по сравнению со строительством больших тепловых электростанций, требующей протяженных линий электропередач. Возобновляемые источники энергии также пользуются спросом и в промышленно развитых странах. Опрос общественного мнения, проведенный в США, показывает, что большая часть энергопотребителей страны согласна платить больше за "зелёную" (экологически чистую) энергию, и многие энергетические компании могут им ее предложить. В Европе благодаря сильной общественной поддержке быстро растет рынок возобновляемых источников энергии.

Различные сценарии развития показывают, что доля использования возобновляемых источников энергии к 2010 году будет составлять от 9,9% до 12,5%. Поставленная цель, составляющая 12%, ("амбициозная, но реально выполнимая"), должна быть достигнута за счет установки 1 млн. "солнечных крыш", установленной мощности ветростанций, равной 15000 МВт и 1000 МВт установленной мощности в области биоэнергетики. Современная доля ВИЭ в энергопроизводстве, составляющая 6%, включает и большую гидроэнергетику, развитие которой в дальнейшем не планируется из-за негативного воздействия на окружающую среду. Увеличение доли ВИЭ должно быть обеспечено за счет развития энергетического использования биомассы, ветроэнергетики (установленная мощность ВЭС должна достигнуть 40 ГВт). Планируется установка 100 миллионов квадратных метров солнечных коллекторов. Ожидается увеличение установленной мощности ФЭБ до 3 ГВт э, геотермальных установок до 1 ГВт т, а тепловых насосов - до 2.5 ГВт т. Общая сумма капиталовложений достигнет 165 миллиардов евро (1997-2010 гг.), будет создано до 900000 новых рабочих мест, выбросы СО 2 уменьшатся на 402 млн.. тонн. Исходя из того, что ВИЭ сегодня обеспечивают менее 6% энергопотребления стран ЕС, необходимо объединить усилия для увеличения этой доли. Это, в свою очередь, создаст возможность для экспорта энергии и улучшения экологии. В настоящее время Европа импортирует более 50% энергоносителей, и если не принять срочных мер, то эта цифра может возрасти до 70% к 2020 году.

По оценкам Европейской Ассоциации Ветроэнергетики, установка ветростанций общей мощностью 40 ГВт, позволит создать дополнительно до 320 000 рабочих мест. По данным Ассоциации Фотоэлектрической Промышленности, установка 3 ГВт э создаст 100000 рабочих мест. Федерация Солнечной Энергетики считает возможным обеспечить 250000 рабочих мест, действуя только для нужд внутреннего рынка и еще 350000 рабочих мест могут быть созданы в случае работы на экспорт. White Paper предлагает ряд налоговых стимулов и других финансовых мер для поощрения инвестиций в область возобновляемых источников энергии, а также меры поощрения использования пассивной солнечной энергии. Согласно этому документу: "Поставленная цель удвоить текущую долю возобновляемых источников энергии до 12% к 2010 году - реально выполнима". Доля возобновляемых источников энергии в производстве электричества может вырасти от 14% до 23% и более к 2010 году, если принять соответствующие меры. Создание рабочих мест - один из наиболее важных аспектов, характеризующих развитие возобновляемой энергетики. Потенциал занятости населения в области возобновляемых источников энергии можно оценить по следующим данным:

Необходимо отметить, что при сравнении различных источников энергии цена является ключевым параметром. Возобновляемые источники энергии зачастую считаются более дорогостоящими по сравнению с ископаемым топливом. Такое заключение обычно основывается на неправильной оценке затрат. Когда мы оплачиваем счет за электроэнергию или заполняем бак своего автомобиля, мы обычно оплачиваем неполную цену за энергию. Цена не включает в себя всех затрат. Существует много скрытых затрат, связанных с использованием энергии. Скрытые социальные и экологические затраты, риск, связанный с использованием ископаемых видов топлива - основные барьеры к коммерциализации возобновляемых технологий. Общепризнано, что современные рынки игнорируют эти затраты. На самом деле, на мировом энергорынке предпочтение отдается загрязняющим источникам энергии, например, серосодержащим - углю и нефти, а не экологически чистым возобновляемым источникам. До тех пор, пока традиционные технологии способны перекладывать на общество существенную часть своих затрат, связанных с загрязнением окружающей среды и расходами на здравоохранение, возобновляемые источники, будут находиться в неравных условиях. И это несмотря на то, что ВИЭ практически не ухудшают состояние экологии и даже дают такие положительные эффекты, как создание рабочих мест, особенно в сельской местности. Поэтому для создания рынка, действующего по правилам "честной игры", необходим учет всех этих затрат.

Очень трудно оценить затраты, связанные с экологическим загрязнением, а некоторые из них даже трудно определить. Тем не менее, проведенные исследования доказывают их существенные размеры. Например, согласно исследованиям немецких ученых, затраты на производство электроэнергии ископаемых видов топлива, не включая затраты, связанные с решением проблемы глобального потепления, составляют 2,4-5,5 амер. цента/кВт*ч. В то же время стоимость электроэнергии, выработанной атомными электростанциями, - 6,1-3,1 амер. цента/кВт*ч. Согласно другому исследованию, выбросы SO 2 при сжигании угля на американских электростанциях ежегодно обходятся гражданам США в 82 миллиарда американских долларов - дополнительно для возмещения ущерба, нанесенного здоровью людей. Сокращение сельскохозяйственных урожаев, вызванное загрязнением воздуха, обходится американским фермерам в 7,5 млрд. американских долларов в год. Важным является тот факт, что граждане США фактически ежегодно оплачивают скрытые затраты, связанные с использованием энергии, в размере примерно 109-260 млрд. долларов. Подобные примеры могут быть приведены для других стран. Если бы дополнительные затраты включались в рыночные процессы, технологии по применению ВИЭ оказались бы в более выгодном положении, конкурируя с ископаемыми видами топлива. Тогда мы могли бы говорить о существенном проникновении ВИЭ на мировой энергетический рынок уже сегодня.

Источник : http://www.ecomuseum.kz/dieret/why/why.html

О.С. Попель , председатель Научного совета РАН по нетрадиционным возобновляемым источникам энергии, заведующий Лабораторией возобновляемых источников энергии и энергоснабжения Объединенного института высоких температур РАН, член Экспертного совета Координационного совета Президиума Генерального совета Всероссийской политической партии «ЕДИНАЯ РОССИЯ» по вопросам энергосбережения и повышения энергетической эффективности

Введение

Сегодня возобновляемые источники энергии (ВИЭ) привлекают все большее внимание, как простых людей, так и руководств многих государств, международных организаций. На заседаниях Большой восьмерки (двадцатки) в последнее время регулярно обсуждаются нарастающие проблемы энергетики и экологии, решение которых в мировом масштабе в будущем не представляется возможным без широкого использования экологически чистых ВИЭ.

Как ни печально, но следует признать, что в отличие от многих других стран в России ясной и последовательной государственной политики в области ВИЭ пока не сформулировано. Политические декларации о важности ВИЭ пока не подкреплены необходимым набором законодательных актов и нормативных документов, стимулирующих использование ВИЭ и определяющих «правила игры» для инвесторов и потребителей «зеленой энергии». Отношение к ВИЭ в России полярное. Есть энтузиасты, которые настаивают на том, что ВИЭ нам нужно использовать как можно шире уже прямо сейчас, а есть пессимисты, в основном из среды топливно-энергетического комплекса, которые утверждают, что для России, являющейся энергетической державой с огромными запасами органических топлив, ВИЭ малоперспективны, в обозримом будущем не смогут внести заметный вклад в энергобаланс страны и поэтому ими всерьез заниматься пока не следует.

В своей статье я хотел бы постараться объективно осветить проблему, дать общую картину, что происходит с возобновляемыми источниками энергии в мире и обосновать, насколько они актуальны для России.

Возобновляемые источники включают широкий спектр источников энергии и технологий их преобразования в полезные для человека виды (электричество, тепло, холод, печные и моторные топлива и т.п.). Большая часть ВИЭ имеют солнечное происхождение (само солнечное излучение, ветер, водные потоки, биомасса). К «не солнечным» относятся геотермальная энергия, морские приливы, сбросное тепло антропогенного происхождения и др. Отмечу, что все известные источники в той или и иной степени могут претендовать на то, чтобы найти эффективное применение в том или ином секторе экономики.

Стимулы развития ВИЭ в мире

Основными стимулами развития возобновляемых источников в мире являются следующие обостряющиеся со временем проблемы, стоящие перед человечеством:

  • 1. Как обеспечить возрастающие энергетические потребности быстро растущего населения мира? В начале ХХI века мировое потребление энергии превысило 500 ЭДж/год (1 ЭДж = 10 18 Дж) или около 12 млрд тн.э./год. По различным прогнозам уже к 2020г. мировое энергопотребление возрастет более чем в полтора раза, в первую очередь, за счет развивающихся стран (рост населения с одновременным повышением удельного в расчете на 1 человека потребления энергии). В условиях постепенного истощения дешевых запасов органического топлива возможность полного и с приемлемыми затратами удовлетворения растущих энергетических потребностей вызывает серьезные опасения. Ядерная энергетика после ряда серьезных аварий на АЭС пока не вызывает доверия общественности, да и ее полноценное развитие возможно лишь при переходе на новые типы реакторов-размножителей, обеспечивающих воспроизводство ядерного топлива, что сопряжено с необходимостью освоения новых технологий и определенными дополнительными рисками. Термоядерная энергетика пока не вышла из стадии фундаментальных исследований, и сроки ее возможного промышленного освоения пока не предсказуемы. В этой ситуации ставка на расширение масштабов использования ВИЭ, ресурсы которых по сравнению с обозримыми энергетическими потребностями человечества практически неограниченны, несмотря на повышенные затраты, представляется вполне оправданной.
  • 2. Как обеспечить энергетическую безопасность стран и регионов, сильно зависящих от импорта энергоресурсов? Эта проблема стоит еще более остро и актуально, чем предыдущая. Мир довольно жестко поделен на страны экспортеры и импортеры энергоресурсов. Месторождения органических топлив и урана по миру распределены крайне «несправедливо», что вызывает экономические и политические кризисы и создает напряженность в мире. ВИЭ распределены по странам мира более или менее равномерно и доступны в том или ином виде и количестве в любой географической точке, что обусловливает их дополнительную привлекательность.
  • 3. Как обеспечить экологическую безопасность? Масштабы современной энергетики пока еще малы в рамках природного энергетического баланса: потребление энергии человечеством составляет всего около 2/10000 суммарного поступления энергии солнечного излучения на поверхность Земли. Вместе с тем, в сравнении с энергией, идущей на процессы фотосинтеза (около 40 ТВт), мировая энергетика соизмерима и, по оценкам, достигает около 20% от нее, что указывает на принципиальную возможность заметного глобального влияния энергетики на биосферу. Энергетика ответственна примерно за 50% всех вредных антропогенных выбросов в окружающую среду, в том числе парниковых газов. Не вызывает сомнений, что ВИЭ более экологически безопасны, чем традиционные источники.

Немаловажными аргументами в пользу развития ВИЭ являются также:

  • забота о будущих поколениях: энергетика - крайне инерционная сфера экономики, продвижение новых энергетических технологий занимает десятки лет, необходима диверсификация первичных источников энергии, в том числе за счет разумного использования ВИЭ;
  • многие технологии энергетического использования ВИЭ уже подтвердили свою состоятельность и за последнее десятилетие продемонстрировали существенное улучшение технико-экономических показателей. Удельные капитальные затраты на создание энергоустановок на ВИЭ и стоимость генерируемой ими энергии приблизились к аналогичным показателям традиционных энергоустановок, и в ряде случаев использование ВИЭ в некоторых регионах и практических приложениях стало вполне конкурентоспособным.

Недостатки ВИЭ

Справедливости ради необходимо отметить, что ВИЭ имеют как массу достоинств, так и существенные недостатки. К недостаткам, прежде всего, относится то, что ВИЭ характеризуются, как правило, небольшой плотностью энергетических потоков: солнечное излучение - менее 1 кВт на 1 м 2 , ветер при скорости 10 м/с и поток воды при скорости 1 м/с - около 500 Вт на 1 м 2 . В то время как в современных энергетических устройствах, мы имеем потоки, измеряемые сотнями киловатт, а иногда и мегаваттами на 1 м 2 . Сбор, преобразование и управление энергетическими потоками малой плотности, в ряде случаев имеющих суточную, сезонную и погодную нестабильность, требуют значительных затрат на создание приемников, преобразователей, аккумуляторов, регуляторов и т.п. Высокие начальные капитальные затраты, правда, в большинстве случаев компенсируются низкими эксплуатационными издержками.

Важно подчеркнуть, что использование ВИЭ оказывается целесообразным, как правило, лишь в оптимальном сочетании с мерами повышения энергоэффективности: например, бессмысленно устанавливать дорогие солнечные системы отопления или тепловые насосы на дом с высокими тепловыми потерями, неразумно с помощью фотоэлектрических преобразователей обеспечивать питание электроприборов с низким КПД, например, систем освещения с лампами накаливания.

Практика использования ВИЭ в мире

Каковы масштабы практического использования ВИЭ в мире? Имеющиеся данные позволяют утверждать, что в мире наблюдается бум возобновляемой энергетики.

Установленная мощность электрогенерирующих установок на нетрадиционных ВИЭ (без крупных ГЭС) к концу 2008 г. достигла 280 ГВт, а в 2010 г. превысила мощность всех атомных электростанций - 340 ГВт. Суммарная мощность 150 тыс. ВЭУ в составе сетевых ветростанций на конец 2009 г. составила 159 ГВт. За 2009 г. в эксплуатацию было введено 39 ГВт ВЭУ, их установленная мощность по сравнению с концом 2008 г. (120 ГВт) выросла на 32%. Выработка ими электроэнергии в 2009 г. достигла 324 ТВт×ч.

Суммарная мощность действующих в мире фотоэлектрических преобразователей (ФЭП) к концу 2009 г. достигла 21,3 ГВт, причем в 2009 г. в эксплуатацию было введено более 7 ГВт, а прирост продаж ФЭП на мировом рынке за год составил более 50%. Годовая выработка ими электроэнергии в 2009 г. составила 23,9 ТВт×ч.

Суммарная мощность энергоустановок на биомассе в 2009 г. достигла 60 ГВт, а годовая выработка электроэнергии более 300 ТВт×ч.

Мощность геотермальных электростанций превысила 10,7 ГВт, а выработка ими электроэнергии 62 ТВт×ч/год.

Суммарная тепловая мощность установок солнечного теплоснабжения в 2008 г. достигла 145 ГВт (более 180 млн м 2 солнечных коллекторов), солнечное горячее водоснабжение имеет более 60 млн домов в мире, ежегодные темпы роста более 15%.

Производство биотоплив (этанол и биодизель) в 2008 г. превысило 79 млрд литров в год (около 5% от ежегодного мирового потребления бензина, биоэтанол - 67, биодизель - 12 млрд литров в год. По сравнению с 2004 г. производство биодизеля возросло в 6 раз, а биоэтанола удвоилось).

В 30 странах мира действует более 2 млн тепловых насосов, суммарной тепловой мощностью более 30 ГВт, утилизирующих природное и сбросное тепло и обеспечивающих тепло- и холодоснабжение зданий.

В настоящее время около 100 стран имеют специальные государственные программы освоения ВИЭ и на государственном уровне утвержденные индикативные показатели их развития на среднесрочную и долгосрочную перспективу. Большинство стран ставят своей целью добиться вклада ВИЭ в энергобаланс страны на уровне не менее 15-20% к 2020 г., а страны Европейского Союза - до 40% к 2040 г. Приоритетное развитие ВИЭ с темпами роста в десятки процентов в год осуществляется при мощной государственной законодательной, финансовой и политической поддержке.

ВИЭ в России

Что же происходит в России? Нужно ли в России форсировать развитие использования ВИЭ?

С точки зрения макроэкономических показателей, Россия, казалось бы, с избытком обеспечена традиционными энергоресурсами. Анализ энергобаланса показывает, то из всех добываемых в стране энергоресурсов около 2/3 экспортируется за рубеж. 45% - в натуральном виде, еще около 13% - в виде энергоемкой продукции низкого передела (металл, удобрения и т.п.), около 6% - приходится на энергию, затрачиваемую на транспорт энергоресурсов и указанной продукции по территории России за рубеж. Что касается нефти, то сегодня 80% всей добываемой в стране нефти экспортируется. Утвержденная Энергетическая стратегия России на период до 2030 г. фактически предусматривает лишь незначительное относительное снижение экспорта энергоресурсов. Экспортная ориентация во многом обусловлена тем, что нефтегазовый комплекс страны обеспечивает около 17% российского ВВП и более 40% доходов консолидированного бюджета, и отказаться от таких доходов крайне сложно. Возникает, однако, вопрос: насколько такая политика дальновидна и стратегически обоснована?

Успокаивает, видимо, то что, по имеющимся оценкам, Россия занимает 1 место по запасам природного газа (23% мировых запасов), 2 место по запасам угля (19% мировых запасов), 5-7 место по запасам нефти (4-5% мировых запасов). На Россию приходится 8% мировой добычи природного урана. Однако и в России легкодоступные месторождения относительно дешевых энергоресурсов быстро истощаются, а разведка и освоение новых месторождений требует огромных затрат. Очевидно, что энергетическая политика страны уже в ближайшее время потребует серьезной коррекции в сторону более рачительного использования энергоресурсов.

С точки зрения международных обязательств России по экологии в стране пока все обстоит благополучно. Резкое падение производства в 1990-2000 гг. привело почти к 40% сокращению выбросов СО 2 в атмосферу.

Оценки показывают, что даже без принятия специальных мер к 2030 г. объемы выбросов не достигнут уровня 1990 г., и проявлять особого беспокойства по этому поводу не требуется.

Приведенные данные, казалось бы, на стороне пессимистов: возобновляемые источники энергии для России при макроэкономическом анализе представляются не актуальными.

Однако давайте теперь посмотрим на Россию, немного с других позиций: с позиций регионов страны и конкретных потребителей энергии.

Факты говорят о том, что:

  • 2/3 территории страны с населением около 20 млн человек находится вне сетей централизованного энергоснабжения. Это - районы страны с наиболее высокими ценами и тарифами на топливо и энергию (10-20руб./кВт и выше);
  • большая часть регионов страны реально энергодефицитны, нуждаются в завозе топлива и поставке энергии. Для них столь же актуально решение проблемы региональной энергетической безопасности, как и для стран-импортеров энергоресурсов;
  • в нашей стране, являющейся газовой державой, газифицировано лишь около 50% городских и около 35% сельских населенных пунктов. Здесь используется уголь, нефтепродукты, являющиеся источниками локального загрязнения окружающей среды;
  • в условиях постоянного роста тарифов и цен на энергию и топливо, растущих затрат на подключение к сетям централизованного энергоснабжения автономная энергетика в стране развивается опережающими темпами: ввод за последние 10 лет дизельных и бензогенераторов единичной мощностью до 100кВт превысил ввод крупных электростанций. Потребители энергии стремятся обеспечить себя собственными источниками электроэнергии и тепла, что, как правило, ведет к снижению эффективности использования топлива по сравнению с комбинированным производством электроэнергии и тепла на ТЭЦ и снижению эффективности всей энергетики страны.

Технико-экономические оценки показывают, что именно районы с децентрализованным и автономным энергоснабжением являются наиболее привлекательными для эффективного использования нетрадиционных возобновляемых источников энергии.

Необходимо проведение целенаправленных исследований и разработок в обоснование эффективности практического использования ВИЭ в конкретных условиях с учетом реальных климатических условий и особенностей потребителей. Крайне важно при поддержке региональных властей создание сети демонстрационных объектов, наглядно показывающих преимущества использования ВИЭ и служащих центрами развития бизнеса в этом секторе энергетики.

Вклад нетрадиционных ВИЭ (без крупных ГЭС) в энергобаланс России пока не превышает 1%. Принятые в последнее время государственные решения предписывают довести вклад ВИЭ к 2020 г. до 4,5%, что потребует ввода энергоустановок на ВИЭ суммарной мощностью 20-25 ГВт. Однако эти решения пока не подкреплены должным образом законодательством и нормативными актами, не приняты принципиальные решения о стимулировании развития ВИЭ, что делает проблематичным выполнение принятых решений.

Россия существенно отстает от ведущих стран по разработке и освоению технологий использования ВИЭ. Тем не менее, имеются примеры реализации успешных проектов в этой области. Это относится к созданию нескольких геотермальных станций на Камчатке, ввод которых позволил существенно сократить объемы завоза дизельного топлива в этот регион. Частный бизнес осуществил «прорыв» в освоении производства древесных пеллет из отходов деревопереработки. Россия вошла в число мировых лидеров по объему производства пеллет (более 2 млн т в год). К сожалению, они производятся преимущественно для экспорта в европейские страны, внутри страны эффективное их использование пока сдерживается административными и экономическими барьерами. Имеются определенные успехи в создании приливных энергоустановок с использованием оригинальных отечественных разработок. Ряд компаний уделяют большое внимание освоению технологий масштабного производства фотоэлектрических преобразователей, но, опять же, с ориентацией преимущественно на экспорт.

Выводы и предложения

Итак, несмотря на то, что Россия, безусловно, лучше, чем любая другая страна в мире, обеспечена собственными запасами традиционных топливно-энергетических ресурсов, развитие возобновляемых источников энергии является крайне важным стратегическим направлением будущей энергетики. Необходимость ускоренного развития ВИЭ уже сегодня в России обусловлено как потребностями в обеспечении энергетической безопасности регионов страны находящихся вне систем централизованного энергоснабжения, где многие технологии использования ВИЭ достигли уровня конкурентоспособности, так и потребностями создания надежного задела в инновационном развитии энергетики страны для будущих поколений.

Если в автономной энергетике многие технологии использования ВИЭ уже сегодня могут быть вполне конкурентоспособными, то в централизованной энергетике требуется реализация мер государственной экономической поддержки по аналогии с другими странами. В этой сфере крайне важно ускорение принятия предусмотренных распоряжениями Правительства нормативных документов, стимулирующих развитие ВИЭ.

  • Ускоренное развитие ВИЭ в России необходимо рассматривать как важный фактор модернизации экономики, в том числе связанной с развитием инновационных производств, разработкой новых инновационных технологий, развитием малого и среднего бизнеса, созданием новых рабочих мест, улучшением социальных условий, улучшением экологии и т.п.

Государство должно быть заинтересованным в развитии ВИЭ и активно содействовать развитию этого нового направления в энергетике, прежде всего, путем создания стимулов для бизнеса. При этом участие государства в развитии ВИЭ не должно стать благотворительностью за счет налогоплательщика, а государственным бизнесом. Каждый затраченный бюджетный рубль на поддержку ВИЭ должен стать окупаемым, он, как показывают оценки и опыт других стран, может и должен приносить прибыль в бюджет в результате развития бизнеса.

ИНТЕРЕСНО

Год рождения эры солнечной энергетики

В далеком 1839 г. Александр Эдмон Беккерель открыл фотогальванический эффект. Спустя 44 года Чарльзу Фриттсу удалось сконструировать первый модуль с использованием солнечной энергии, а основой для него послужил селен, покрытый тончайшим слоем золота. Ученый установил, что такое сочетание элементов позволяет, хоть и в минимальной степени (около 1%), преобразовывать энергию солнца в электричество.

Однако так думают не все. В научном свете бытует мнение, что «отцом» эпохи солнечной энергии является не кто иной, как сам Альберт Эйнштейн.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат , добавлен 27.02.2010

    Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа , добавлен 30.07.2012

    Динамика развития возобновляемых источников энергии в мире и России. Ветроэнергетика как отрасль энергетики. Устройство ветрогенератора - установки для преобразования кинетической энергии ветрового потока. Перспективы развития ветроэнергетики в России.

    реферат , добавлен 04.06.2015

    Использование возобновляемых источников энергии, их потенциал, виды. Применение геотермальных ресурсов; создание солнечных батарей; биотопливо. Энергия Мирового океана: волны, приливы и отливы. Экономическая эффективность использования энергии ветра.

    реферат , добавлен 18.10.2013

    Существующие источники энергии. Мировые запасы энергоресурсов. Проблемы поиска и внедрения нескончаемых или возобновляемых источников энергии. Альтернативная энергетика. Энергия ветра, недостатки и преимущества. Принцип действия и виды ветрогенераторов.

    курсовая работа , добавлен 07.03.2016

    Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа , добавлен 15.12.2011

    Использование возобновляемых источников энергии. Энергия солнца, ветра, биомассы и падающей воды. Генерирование электричество из геотермальных источников. Сущность геотермальной энергии. Геотермальные электрические станции с комбинированным циклом.

    Подробности Опубликовано 21.07.2015 19:21

    Возобновляемыми принято называть те ресурсы планеты, которые могут восстанавливаться природным путем. Например: ветер, свет солнца, приливы, геотермальное тепло. Стоит отметить, что эти источники называются возобновляемыми, исходя из масштабов человеческого времени. Ведь даже солнце однажды перестанет светить, но произойдет это лишь через несколько миллиардов лет.

    Сегодня существует уже более 20 стран, доля возобновляемых источников энергии, в общем энергетическом балансе которых превышает 20 %. Среди них: Исландия, Норвегия, Шотландия, Дания, Германия и другие. Существуют и .

    Электроэнергия возобновляемых источников может быть использована как в промышленных масштабах всей страны, так и в отдельных сельских регионах. Генеральный секретарь ООН, Пан Ги Мун заявил о том, что возобновляемые источники энергии помогут бедным странам во всем мире стать процветающими.

    К основным возобновляемым источникам планеты относят:

    • Реки и океаны
    • Ветер
    • Солнце
    • Геотермальные источники
    • Биомассу

    Энергия воды

    Отрасль энергетики, занимающаяся преобразованием энергии воды в электроэнергию, называется гидроэнергетика.

    Существует несколько разновидностей источников энергии воды:

    Энергия рек
    Энергия волн
    Энергия приливов

    Ветряки также устанавливаются в океане, где энергия ветра обычно выше из-за отсутствия преград.

    Наземные ветряные турбины

    Солнечная энергия

    Солнечная энергия может быть напрямую преобразована в электроэнергию с помощью солнечных батарей. Или же использоваться для нагрева воды, полученный пар приводит в движение турбины. Солнечный свет может попадать прямо на солнечные батареи, или же предварительно концентрироваться с помощью линз.


    Концентрированная солнечная электростанция (CSP)

    Фотоэлектрическая солнечная электростанция
    Энергия солнца может быть использована для искусственного фотосинтеза. Это когда в результате действия солнца, происходит расщепление воды на кислород и водород.
    На данный момент наибольшим препятствием развития солнечной энергетики остается высокая цена на солнечные панели. Ученые продолжают поиск новых материалов, которые смогут снизить цены на солнечные панели.

    Геотермальная энергия

    Наша земля является огромным источником тепловой энергии. Эта энергия исходит от ядра, а также является результатом распада органических веществ.

    Вода, нагретая в недрах земли, может быть использована для отопления домов или преобразована в электроэнергию. Как получают электроэнергию из геотермальных источников читайте

    Учебный год

    Лекция 20

    Энергосберегающие технологии и освоение новых источников энергии

    Условно источники энергии можно поделить на два типа: невозобновляемые и возобновляемые . К первым относятся газ, нефть, уголь, уран и т. д. Технология получения и преобразования энергии из этих источников отработана, но, как правило, не экологична, и многие из них истощаются.

    Возобновляемые источники энергии - это источники, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из природных ресурсов - таких как солнечный свет, ветер, движении воды в реках или морях, приливы, биотопливо и геотермальная теплота - которые являются возобновляемыми, т.е. пополняются естественным путем.

    Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

    Примеры использования возобновляемой энергии.

    1.Ветроэнергетика является бурно развивающейся отраслью. Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Использование энергии ветра растет примерно на 30 процентов в год и широко используется в странах Европы и США.

    2. На гидроэлектростанциях (ГЭС) в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободнопоточных (бесплотинных) ГЭС.

    Особенности этого источника энергии:

    Себестоимость электроэнергии на ГЭС существенно ниже, чем на всех иных видах электростанций;

    Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;

    Возобновляемый источник энергии;

    Значительно меньше воздействует на воздушную среду, чем другие виды электростанций;


    Строительство ГЭС обычно более капиталоёмкое;

    Часто эффективные ГЭС удалены от потребителей;

    Водохранилища часто занимают значительные территории;

    Лидерами по выработке гидроэнергии на человека являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

    3.Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов.

    Способы получения электричества и тепла из солнечного излучения:

    Получение электроэнергии с помощью фотоэлементов;

    Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;

    Гелиотермальная энергетика - нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах);

    Термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор);

    Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием), преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

    Достоинства солнечной энергетики :

    Общедоступность и неисчерпаемость источника;

    Теоретически полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной способности) земной поверхности и привести к изменению климата.

    Недостатки солнечной энергетики :

    Зависимость от погоды и времени суток;

    Как следствие необходимость аккумуляции энергии;

    Высокая стоимость конструкции;

    Необходимость периодической очистки отражающей поверхности от пыли;

    Нагрев атмосферы над электростанцией.

    4.Приливные электростанции . Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

    Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроаккумулирующая электростанция.

    Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками - высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

    5.Геотермальная энергетика - направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Крупнейшей в мире геотермальной установкой является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт.

    6.Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, брикеты,топливные гранулы, щепа, солома, лузга) и газообразное (биогаз, водород).

    США и Бразилия производят 95 % мирового объёма биоэтанола. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США из кукурузы. По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

    Этанол является менее «энергоплотным» источником энергии чем бензин; пробег машин, работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» от английского Ethanol), на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания прекрасно работают на Е10 (некоторые источники утверждают, что можно использовать даже Е15). На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины («гибкотопливные» машины). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива.

    Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. По расчётам экономистов из Университета Миннесоты, в результате биотопливного бума число голодающих на планете к 2025 году возрастёт до 1,2 млрд. человек.

    С другой стороны, продовольственная и сельскохозяйственная организация ООН (FAO) в своем отчете говорит о том, что рост потребления биотоплив может помочь диверсифицировать сельскохозяйственную и лесную деятельность, способствуя экономическому развитию. Производство биотоплив позволит создать в развивающихся странах новые рабочие места, снизить зависимость развивающихся стран от импорта нефти. Кроме этого производство биотоплив позволит вовлечь в оборот ныне не используемые земли. Например, в Мозамбике сельское хозяйство ведётся на 4,3 млн. га из 63,5 млн. га потенциально пригодных земель. По оценкам Стэндфордского университета во всём мире из сельскохозяйственного оборота выведено 385-472 миллиона гектаров земли. Выращивание на этих землях сырья для производства биотоплив позволит увеличить долю биотоплив до 8 % в мировом энергетическом балансе. На транспорте доля биотоплив может составить от 10 % до 25 %.

    7.Водородная энергетика - развивающаяся отрасль энергетики, направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

    Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе. Топливные элементы - это электрохимические устройства, которые могут иметь очень высокий коэффициент преобразования химической энергии в электрическую (~80 %). Обычно в низкотемпературных топливных элементах используются: водород со стороны анода и кислород на стороне катода (водородный элемент). В отличие от топливных элементов, одноразовые гальванические элементы содержат твердые реагенты, и когда электрохимическая реакция прекращается, должны быть заменены, электрически перезаряжены, чтобы запустить обратную химическую реакцию, или, теоретически, в них можно заменить электроды. В топливном элементе реагенты втекают, продукты реакции вытекают, и реакция может протекать так долго, как поступают в нее реагенты и сохраняется работоспособность самого элемента. Топливные элементы не могут хранить электрическую энергию, как гальванические или аккумуляторные батареи, но для некоторых применений, таких как работающие изолированно от электрической системы электростанции, использующие непостоянные источники энергии (солнце, ветер), они совместно с электролизёрами, компрессорами и ёмкостями для хранения топлива (например, баллоны для водорода), образуют устройство для хранения энергии. Общий КПД такой установки (преобразование электрической энергии в водород, и обратно в электрическую энергию) 30-40 %.

    Топливные элементы обладают рядом ценных качеств, среди которых:

    7.1 Высокий КПД : у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин. Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %.

    7.2Экологичность . В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать экологичность в тех местах, где производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу.

    7.3 Компактные размеры . Топливные элементы легче и занимают меньший размер, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях.

    Проблемы топливных элементов .

    Внедрению топливных элементов на транспорте мешает отсутствие водородной инфраструктуры. Возникает проблема «курицы и яйца» - зачем производить водородные автомобили, если нет инфраструктуры? Зачем строить водородную инфраструктуру, если нет водородного транспорта? Топливные элементы, в силу низкой скорости химических реакций, обладают значительной инертностью и для работы в условиях пиковых или импульсных нагрузок требуют определённого запаса мощности или применения других технических решений (сверхконденсаторы, аккумуляторные батареи). Также существует проблема получения водорода и хранения водорода. Во-первых, он должен быть достаточно чистый, чтобы не произошло быстрого отравления катализатора, во-вторых, достаточно дешёвый, чтобы его стоимость была рентабельна для конечного потребителя.

    Существует множество способов производства водорода, но в настоящее время около 50 % водорода, производимого во всём мире, получают из природного газа. Все остальные способы пока дорогостоящи. Существует мнение, что с ростом цен на энергоносители стоимость водорода также растёт, так как он является вторичным энергоносителем. Но себестоимость энергии, производимой из возобновляемых источников, постоянно снижается.