Закон сохранения механической энергии формула. Энергия. Закон сохранения энергии. История появления закона

Полная механическая энергия замкнутой системы тел остается неизменной


Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.


В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 - это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Раздел ОГЭ по физике: 1.18. Механическая энергия. Закон сохранения механической энергии. Формула для закона сохранения механической энергии в отсутствие сил трения. Превращение механической энергии при наличии силы трения.

1. Энергия тела – физическая величина, показывающая работу, которую может совершить рассматриваемое тело (за любое, в том числе неограниченное время наблюдения). Тело, совершающее положительную работу, теряет часть своей энергии. Если же положительная работа совершается над телом, энергия тела увеличивается. Для отрицательной работы – наоборот.

  • Энергией называют физическую величину, которая характеризует способность тела или системы взаимодействующих тел совершить работу.
  • Единица энергии в СИ 1 Джоуль (Дж).

2. Кинетической энергией называется энеpгия движущихся тел. Под движением тела следует понимать не только перемещение в пространстве, но и вращение тела. Кинетическая энергия тем больше, чем больше масса тела и скорость его движения (перемещения в пространстве и/или вращения). Кинетическая энеpгия зависит от тела, по отношению к которому измеряют скорость рассматриваемого тела.

  • Кинетическая энергия Е к тела массой m , движущегося со скоростью v , определяется по формуле Е к =mv 2 /2

3. Потенциальной энергией называется энергия взаимодействующих тел или частей тела. Различают потенциальную энергию тел, находящихся под действием силы тяжести, силы упругости, архимедовой силы. Любая потенциальная энергия зависит от силы взаимодействия и расстояния между взаимодействующими телами (или частями тела). Потенциальная энергия отсчитывается от условного нулевого уровня.

  • Потенциальной энергией обладают, например, груз, поднятый над поверхностью Земли, и сжатая пружина.
  • Потенциальная энергия поднятого груза Е п = mgh .
  • Кинетическая энергия может превращаться в потенциальную, и обратно.

4. Механической энергией тела называют сумму его кинетической и потенциальной энергий . Поэтому механическая энеpгия любого тела зависит от выбора тела, по отношению к которому измеряют скорость рассматриваемого тела, а также от выбора условных нулевых уровней для всех разновидностей имеющихся у тела потенциальных энергий.

  • Механическая энергия характеризует способность тела или системы тел совершить работу вследствие изменения скорости тела или взаимного положения взаимодействующих тел.

5. Внутренней энергией называется такая энергия тела, за счёт которой может совершаться механическая работа, не вызывая убыли механической энергии этого тела. Внутренняя энеpгия не зависит от механической энергии тела и зависит от строения тела и его состояния.

6. Закон сохранения и превращения энергии гласит, что энеpгия ниоткуда не возникает и никуда не исчезает; она лишь переходит из одного вида в другой или от одного тела к другому.

  • Закон сохранения механической энергии : если между телами системы действуют только силы тяготения и силы упругости, то сумма кинетической и потенциальной энергии остается неизменной, то есть механическая энергия сохраняется.

Таблица «Механическая энергия. Закон сохранения энергии».

7. Изменение механической энергии системы тел в общем случае равно сумме работы внешних по отношению к системе тел и работы внутренних сил трения и сопротивления: ΔW = А внешн + А диссип

Если система тел замкнута (А внешн = 0), то ΔW = А диссип, то есть полная механическая энергия системы тел меняется только за счёт работы внутренних диссипативных сил системы (сил трения).

Если система тел консервативна (то есть отсутствуют силы трения и сопротивления А тр = 0), то ΔW = А внешн, то есть полная механическая энергия системы тел меняется только за счёт работы внешних по отношению к системе сил.

8. Закон сохранения механической энергии : В замкнутой и консервативной системе тел полная механическая энергия сохраняется: ΔW = 0 или W п1 + W к1 = W п2 + W к2 . Применим законы сохранения импульса и энергии к основным моделям столкновений тел .

  • Абсолютно неупругий удар (удар, при котором тела движутся после столкновения вместе, с одинаковой скоростью). Импульс системы тел сохраняется, а полная механическая энергия не сохраняется:

  • Абсолютно упругий удар (удар, при котором сохраняется механическая энергия системы). Сохраняются и импульс системы тел, и полная механическая энергия:

Удар, при котором тела до соударения движутся по прямой, проходящей через их центры масс, называется центральным ударом .

Схема Углубленный уровень «

Конспект урока по физике «Механическая энергия. Закон сохранения энергии». Выберите дальнейшие действия:

Суммарная механическая энергия системы () — это энергия механического энергия и взаимодействия:

где — кинетическая энергия тела; — потенциальная энергия тела.

Закон сохранения энергии создан в результате обобщения эмпирических данных. Идея такого закона принадлежала М.В. Ломоносову, который представил закон сохранения материи и движения. Количественно закон сформулировали немецкий врач Ю. Майер и ученый — естествоиспытатель. Гельмгольц.

Формулировка закона сохранения механической энергии

Если в системе тел действуют исключительно силы, которые являются консервативными, то суммарная механическая энергия остается неизменной во времени. (Консервативными (потенциальными) называют силы, работа которых не зависит: от вида траектории, точки к которой приложены данные силы, закона, который описывает движение этого тела, и определено исключительно начальной и конечной точками траектории движения тела (материальной точки)).

Механические системы, в которых действуют исключительно консервативные силы, называют консервативными системами.

Еще одной формулировкой закона сохранения механической энергии считают следующую:

Для консервативных систем суммарная механическая энергия системы величина неизменная.

Математическая формулировка закона сохранения механической энергии имеет вид:

Значение закона сохранения механической энергии

Данный закон связан со свойством однородности времени. Что означает инвариантность законов физики относительно выбора начала временного отсчета.

В диссипативных системах механическая энергия уменьшается, так как происходит преобразование механической энергии в немеханические ее виды. Такой процесс называют рассеянием (диссипацией) энергии.

В консервативных системах полная механическая энергия постоянна. Происходят переходы кинетической энергии в потенциальную и наоборот. Следовательно, закон сохранения механической энергии отражает не только сохранение энергии количественно, но указывает на качественную сторону взаимного превращения разных форм движения друг в друга.

Закон сохранения и превращения энергии является фундаментальным законом природы. Он выполняется и в макро и микро мире.

Примеры решения задач

ПРИМЕР 1

Задание Тело массы упало с высоты на площадку, прикрепленную к пружине с коэффициентом упругости (рис.1). Каково смещение пружины ()?


Решение За ноль потенциальной энергии примем положение площадки до падения на нее груза. Потенциальная энергия тела, поднятого на высоту ,переходит в потенциальную энергию сжатой пружины. Запишем закон сохранения энергии системы тело — пружина:

Получили квадратное уравнение:

Решая квадратное уравнение получим:

Ответ

ПРИМЕР 2

Задание Объясните, почему говорят о всеобщем характере закона сохранения энергии, но известно, что при наличии неконсервативных сил в системе механическая энергия убывает.
Решение Если сил трения в системе нет, то закон сохранения механической энергии выполняется, то есть полная механическая энергия не изменяется во времени. При действии сил трения, механическая энергия убывает, но при этом увеличивается внутренняя энергия. С развитием физики как науки были обнаружены новые виды энергии (световая энергия, электромагнитная энергия, химическая энергия, ядерная энергия). Было выяснено, что если над телом совершается работа, то она равна приращению суммы всех видов энергии тела. Если тело само совершает работу, над другими телами, то эта работа равна убыли суммарной энергии этого тела. Все виды энергии переходят из одного вида в другой. Причем, при всех переходах суммарная энергия остается неизменной. В этом и состоит всеобщность закона сохранения энергии.

механической энергии. Превращения энергии

Поскольку движение и взаимодействие взаимосвязаны (взаимодействие определяет движение материальных объектов, а движение объектов, в свою очередь, влияет на их взаимодействие), то должна быть единая мера, характеризующая движение и взаимодействие материи.

Энергия и является единой скалярной количественной мерой различных форм движения и взаимодействия материи. Различным формам движения и взаимодействия соответствуют различные виды энергии: механическая, внутренняя, электромагнитная, ядерная и т.д. Простейшим видом энергии, соответствующим простейшей - механической - форме движения и взаимодействия материи, является механическая энергия.

Одним из наиболее важных законов всего естествознания является всеобщий закон сохранения энергии . Он утверждает, что энергия не возникает ниоткуда и не исчезает бесследно, а лишь переходит из одной формы в другую.

Закон сохранения механической энергии есть частный случай всеобщего закона сохранения энергии.

Полная механическая энергия материальной точки (частицы) и системы частиц складывается из двух частей. Первая составляющая энергии частицы обуславливается ее движением, называется кинетической энергией и вычисляется по формуле

где m - масса частицы, - ее скорость.

Кинетическая энергия частицы изменяется, если при движении частицы на нее действует сила (силы), совершающая работу.

В простейшем случае, когда сила постоянна по величине и по направлению, а траектория движения прямолинейна, то работаA , совершаемая этой силой при перемещении
, определяется по формуле

где s - пройденный путь, равный при прямолинейном движении модулю перемещения
,
- скалярное произведение векторови
, равное произведению модулей этих векторов на косинус угла
между ними.

Работа может быть положительной, если угол
острый (
90°), отрицательной, если угол
тупой (90°
180°), и может быть равна нулю если угол
прямой (
=90°).

Можно доказать, что изменение кинетической энергии
частицы при ее перемещении из точки 1 в точку 2 равно сумме работ, совершенных всеми силами, действующими на эту частицу, при данном перемещении:

, (6.13)

где
- кинетическая энергия частицы в начальной и в конечной точках,- работа, совершенная силой(i =1, 2, ... n ) при данном перемещении.

Кинетической энергией системы
изN частиц называется сумма кинетических энергий всех частиц системы. Ее изменение при любом изменении конфигурации системы, то есть произвольном перемещении частиц, равно суммарной работе
, совершенной всеми силами, действующими на частицы системы, при их перемещениях:

. (6.14)

Второй составляющей механической энергии является энергия взаимодействия, называемая потенциальной энергией. В механике понятие потенциальной энергии может быть введено не для любых взаимодействий, а лишь для определенного их класса.

Пусть в каждой точке пространства, где может находиться частица, на нее в результате взаимодействия с другими телами действует сила, зависящая только от координат x, y, z частицы и, возможно, от времени t :
. Тогда говорят, что частица находится в силовом поле взаимодействия с другими телами. Примеры: материальная точка, движущаяся в гравитационном поле Земли; электрон, движущийся в электростатическом поле неподвижного заряженного тела. В этих примерах сила, действующая на частицу, в каждой точке пространства от времени не зависит:
. Такие поля называются стационарными.

Если же, например, электрон будет находиться в электрическом поле конденсатора, напряжение между обкладками которого изменяется, то в каждой точке пространства сила будет зависеть и от времени:
. Такое поле называется нестационарным.

Сила, действующая на частицу, называется консервативной, а соответствующее поле – полем консервативной силы, если работа, совершаемая этой силой при перемещении частицы по произвольному замкнутому контуру, будет равна нулю.

К консервативным силам и соответствующим полям относятся сила всемирного тяготения и, в частности, сила тяжести (гравитационное поле), сила Кулона (электростатическое поле), сила упругости (поле сил, действующих на тело, прикрепленное к некоторой точке упругой связью).

Примерами неконсервативных сил являются сила трения, сила сопротивления среды движению тела.

Только для взаимодействий, которым соответствуют консервативные силы, может быть введено понятие потенциальной энергии.

Под потенциальной энергией
механической системы понимается величина, убыль которой (разность начального и конечного значений) при произвольном изменении конфигурации системы (изменении положения частиц в пространстве) равна работе
, совершаемой при этом всеми внутренними консервативными силами, действующими между частицами этой системы:

, (6.15)

где
- потенциальная энергия системы в начальной и конечной конфигурации.

Заметим, что убыль
равна с обратным знаком приращению (изменению)
потенциальной энергии и поэтому соотношение (6.15) можно записать в виде

. (6.16)

Такое определение потенциальной энергии системы частиц позволяет находить ее изменение при изменении конфигурации системы, но не само значение потенциальной энергии системы при заданной конфигурации. Поэтому во всех конкретных случаях уславливаются, при какой конфигурации системы (нулевой конфигурации) ее потенциальная энергия
принимается равной нулю (
). Тогда потенциальная энергия системы при любой ее конфигурации
, а из (6.15) следует, что

, (6.17)

то есть потенциальная энергия системы частиц некоторой конфигурации равна работе
, совершаемой внутренними консервативными силами при изменении конфигурации системы от данной до нулевой.

Потенциальная энергия тела, находящегося в однородном поле силы тяжести вблизи поверхности Земли, принимается равной нулю при нахождении тела на поверхности Земли. Тогда потенциальная энергия притяжения к Земле тела, находящегося на высоте h , равна работе силы тяжести
, совершаемой при перемещении тела с этой высоты на поверхность Земли, то есть на расстояниеh по вертикали:

Потенциальная энергия тела, прикрепленного к фиксированной точке упругой связью (пружиной), принимается равной нулю при недеформированной связи. Тогда потенциальная энергия упруго деформированной (растянутой или сжатой на величину
) пружины с коэффициентом жесткостиk равна

. (6.19)

Потенциальная энергия гравитационного взаимодействия материальных точек и электростатического взаимодействия точечных зарядов принимается равной нулю, если эти точки (заряды) удалены на бесконечное расстояние друг от друга. Поэтому энергия гравитационного взаимодействия материальных точек массами и
, находящихся на расстоянииr друг от друга, равна работе силы всемирного тяготения
, совершенной при изменении расстоянияx между точками от x=r до
:

. (6.20)

Из (6.20) следует, что потенциальная энергия гравитационного взаимодействия материальных точек при указанном выборе нулевой конфигурации (бесконечном удалении) оказывается отрицательной при размещении точек на конечном расстоянии друг от друга. Это связано с тем, что сила всемирного тяготения есть сила притяжения, и ее работа при удалении точек друг от друга отрицательна. Отрицательность потенциальной энергии означает, что при переходе этой системы из произвольной конфигурации в нулевую (при удалении точек с конечного расстояния на бесконечное) ее потенциальная энергия увеличивается.

Аналогично, потенциальная энергия электростатического взаимодействия точечных зарядов в вакууме равна

(6.21)

и отрицательна для притягивающихся разноименных зарядов (знаки иразличны) и положительна для отталкивающихся одноименных зарядов (знакииодинаковы).

Полной механической энергией системы (механической энергией системы)
называется сумма ее кинетической и потенциальной энергий

. (6.22)

Из (6.22) следует, что изменение полной механической энергии складывается из изменения ее кинетической и потенциальной энергии

Подставим в формулу (6.33) формулы (6.14) и (6.16). В формуле (6.14) общую работу
всех сил, действующих на точки системы, представим как сумму работы сил, внешних по отношению к рассматриваемой системе,
и работы внутренних сил, которая, в свою очередь, складывается из работы внутренних консервативных и неконсервативных сил,

:

После подстановки получим, что

Для замкнутой системы
0. Если система к тому же консервативна, то есть в ней действуют только внутренние консервативные силы, то и
=0. В этом случае уравнение (6.24) принимает вид
, а это означает, что

Уравнение (6.2) есть математическая запись закона сохранения механической энергии, который гласит: полная механическая энергия замкнутой консервативной системы постоянна, то есть не изменяется со временем.

Условие
0 выполняется, если в системе действуют и неконсервативные силы, но их работа равна нулю, как, например, при наличии сил трения покоя. В этом случае для замкнутой системы закон сохранения механической энергии также применим.

Отметим, что при
отдельные слагаемые механической энергии: кинетическая и потенциальная энергия, - не обязаны оставаться постоянными. Они могут изменяться, что сопровождается совершением работы консервативными внутренними силами, но изменения потенциальной и кинетической энергии
и
равны по модулю и противоположны по знаку. Например, за счет совершения внутренними консервативными силами работы над частицами системы ее кинетическая энергия возрастет, но при этом на равную величину уменьшится ее потенциальная энергия.

Если же в системе совершают работу неконсервативные силы, то это обязательно сопровождается взаимными превращениями механической и иных видов энергии. Так, совершение работы неконсервативными силами трения скольжения или сопротивления среды обязательно сопровождается выделением тепла, то есть переходом части механической энергии во внутреннюю (тепловую) энергию. Неконсервативные силы, работа которых приводит к переходу механической энергии в тепловую, называются диссипативными, а сам процесс перехода механической энергии в тепловую - диссипацией механической энергии.

Есть множество неконсервативных сил, работа которых, напротив, ведет к увеличению механической энергии системы за счет иных видов энергии. Например, в результате химических реакций происходит взрыв снаряда; при этом осколки получают прибавку механической (кинетической) энергии за счет работы неконсервативной силы давления расширяющихся газов - продуктов взрыва. В этом случае посредством совершения работы неконсервативных сил произошел переход химической энергии в механическую. Схема взаимных превращений энергии при совершении работы консервативными и неконсервативными силами представлена на рисунке 6.3.

Таким образом, работа есть количественная мера превращения одних видов энергии в другие. Работа консервативных сил равна количеству потенциальной энергии, перешедшей в кинетическую или наоборот (общая механическая энергия при этом не изменяется), работа неконсервативных сил равна количеству механической энергии, перешедшей в другие виды энергии или наоборот.

Рисунок 6.3 - Схема превращений энергии.

Всеобщий закон сохранения энергии фактически есть закон неуничтожимости движения в природе, а закон сохранения механической энергии - закон неуничтожимости механического движения при определенных условиях. Изменение же механической энергии при невыполнении этих условий не означает уничтожения движения или его появления ниоткуда, а свидетельствует о превращении одних форм движения и взаимодействия материи в другие.

Обратим внимание на отличие обозначений бесконечно малых величин. Например, dx обозначает бесконечно малое приращение координаты,
- скорости,dE – энергии, а бесконечно малую работу обозначают
. Это отличие имеет глубокий смысл. Координаты и скорость частицы, ее энергия и многие другие физические величины являются функциями состояния частицы (системы частиц), то есть определяются текущим состоянием частицы (системы частиц) и не зависят от того, какими были предшествующие состояния, и от того, каким способом частица (система) пришла в текущее состояние. Изменение такой величины можно представить как разность значений этой величины в конечном и начальном состояниях. Бесконечно малое изменение такой величины (функции состояния) называется полным дифференциалом и для величиныX обозначается dX .

Такие же величины, как работа или количество теплоты, характеризуют не состояние системы, а способ, которым был реализован переход из одного состояния системы в другое. Например, говорить о наличии работы у системы частиц в каком-то заданном состоянии бессмысленно, но можно говорить о работе, совершенной силами, действующими на систему, при ее переходе из одного состояния в другое. Таким образом, не имеет смысла говорить и о разности значений такой величины в конечном и начальном состояниях. Бесконечно малое количество величины Y , не являющейся функцией состояния, обозначается
.

Отличительным признаком функций состояния является то, что их изменения в процессах, в которых система, выйдя из исходного состояния, в него же и возвращается, равны нулю. Механическое состояние системы частиц задается их координатами и скоростями. Поэтому, если в результате некоторого процесса механическая система возвращается в исходное состояние, то координаты и скорости всех частиц системы принимают первоначальные значения. Механическая энергия, как величина, зависящая только от координат и скоростей частиц, также примет исходное значение, то есть не изменится. В то же время работа, совершенная силами, действующими на частицы, будет отлична от нуля, причем ее значение может быть разным в зависимости от вида траекторий, описанных частицами системы.

При имеющейся замкнутой механической системе тела взаимодействуют посредством сил тяготения и упругости, тогда их работа равняется изменению потенциальной энергии тел с противоположным знаком:

A = – (E р 2 – E р 1) .

Следуя из теоремы о кинетической энергии, формула работы примет вид

A = E k 2 - E k 1 .

Отсюда следует, что

E k 2 - E k 1 = – (E р 2 – E р 1) или E k 1 + E p 1 = E k 2 + E p 2 .

Определение 1

Сумма кинетической и потенциальной энергии тел , составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной .

Данное утверждение выражает закон сохранения энергии в замкнутой системе и в механических процессах, являющийся следствием законов Ньютона.

Определение 2

Закон сохранения энергии выполняется при взаимодействии сил с потенциальными энергиями в замкнутой системе.

Пример N

Примером применения такого закона служит нахождение минимальной прочности легкой нерастяжимой нити, которая удерживает тесло с массой m , вращая его вертикально относительно плоскости (задачи Гюйгенса). Подробное решение изображено на рисунке 1 . 20 . 1 .

Рисунок 1 . 20 . 1 . К задаче Гюйгенса, где F → принимается за силу натяжения нити в нижней точке траектории.

Запись закона сохранения полной энергии в верхней и нижней точках принимает вид

m v 1 2 2 = m v 2 2 2 + m g 2 l .

F → располагается перпендикулярно скорости тела, отсюда следует вывод, что она не совершает работу.

Если скорость вращения минимальная, то натяжение нити верхней точке равняется нулю, значит, центростремительное ускорение может быть сообщено только при помощи силы тяжести. Тогда

m v 2 2 l = m g .

Исходя из соотношений, получаем

v 1 m i n 2 = 5 g l .

Создание центростремительного ускорения производится силами F → и m g → с противоположными направлениями относительно друг друга. Тогда формула запишется:

m v 1 2 2 = F - m g .

Можно сделать вывод, что при минимальной скорости тела в верхней точке натяжение нити будет равняться по модулю значению F = 6 m g .

Очевидно, что прочность нити обязана превышать значение.

С помощью закона сохранения энергии посредством формулы можно получить связь между координатами и скоростями тела в двух разных точках траектории, не используя анализ закона движения тела во всех промежуточных точках. Данный закон позволяет заметно упрощать решение задач.

Реальные условия для движущихся тел предполагают действия сил тяготения, упругости, трения и сопротивления данной среды. Работа силы трения зависит от длины пути, поэтому она не является консервативной.

Определение 3

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

Рисунок 1 . 20 . 2 . Проект вечного двигателя. Почему данная машина не будет работать?

Существует большое количество таких проектов. Они не имеют право на существование, так как при расчетах отчетливо видны одни ошибки конструкций всего прибора, другие замаскированы. Попытки реализовать такую машину тщетны, так как они противоречат закону сохранения и превращения энергии, поэтому нахождение формулы не даст результатов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter