Закон сохранения механической энергии утверждает что. Закон сохранения энергии. Формула. Определение. Примеры. Когда действуют внешние силы

механической энергии. Превращения энергии

Поскольку движение и взаимодействие взаимосвязаны (взаимодействие определяет движение материальных объектов, а движение объектов, в свою очередь, влияет на их взаимодействие), то должна быть единая мера, характеризующая движение и взаимодействие материи.

Энергия и является единой скалярной количественной мерой различных форм движения и взаимодействия материи. Различным формам движения и взаимодействия соответствуют различные виды энергии: механическая, внутренняя, электромагнитная, ядерная и т.д. Простейшим видом энергии, соответствующим простейшей - механической - форме движения и взаимодействия материи, является механическая энергия.

Одним из наиболее важных законов всего естествознания является всеобщий закон сохранения энергии . Он утверждает, что энергия не возникает ниоткуда и не исчезает бесследно, а лишь переходит из одной формы в другую.

Закон сохранения механической энергии есть частный случай всеобщего закона сохранения энергии.

Полная механическая энергия материальной точки (частицы) и системы частиц складывается из двух частей. Первая составляющая энергии частицы обуславливается ее движением, называется кинетической энергией и вычисляется по формуле

где m - масса частицы, - ее скорость.

Кинетическая энергия частицы изменяется, если при движении частицы на нее действует сила (силы), совершающая работу.

В простейшем случае, когда сила постоянна по величине и по направлению, а траектория движения прямолинейна, то работаA , совершаемая этой силой при перемещении
, определяется по формуле

где s - пройденный путь, равный при прямолинейном движении модулю перемещения
,
- скалярное произведение векторови
, равное произведению модулей этих векторов на косинус угла
между ними.

Работа может быть положительной, если угол
острый (
90°), отрицательной, если угол
тупой (90°
180°), и может быть равна нулю если угол
прямой (
=90°).

Можно доказать, что изменение кинетической энергии
частицы при ее перемещении из точки 1 в точку 2 равно сумме работ, совершенных всеми силами, действующими на эту частицу, при данном перемещении:

, (6.13)

где
- кинетическая энергия частицы в начальной и в конечной точках,- работа, совершенная силой(i =1, 2, ... n ) при данном перемещении.

Кинетической энергией системы
изN частиц называется сумма кинетических энергий всех частиц системы. Ее изменение при любом изменении конфигурации системы, то есть произвольном перемещении частиц, равно суммарной работе
, совершенной всеми силами, действующими на частицы системы, при их перемещениях:

. (6.14)

Второй составляющей механической энергии является энергия взаимодействия, называемая потенциальной энергией. В механике понятие потенциальной энергии может быть введено не для любых взаимодействий, а лишь для определенного их класса.

Пусть в каждой точке пространства, где может находиться частица, на нее в результате взаимодействия с другими телами действует сила, зависящая только от координат x, y, z частицы и, возможно, от времени t :
. Тогда говорят, что частица находится в силовом поле взаимодействия с другими телами. Примеры: материальная точка, движущаяся в гравитационном поле Земли; электрон, движущийся в электростатическом поле неподвижного заряженного тела. В этих примерах сила, действующая на частицу, в каждой точке пространства от времени не зависит:
. Такие поля называются стационарными.

Если же, например, электрон будет находиться в электрическом поле конденсатора, напряжение между обкладками которого изменяется, то в каждой точке пространства сила будет зависеть и от времени:
. Такое поле называется нестационарным.

Сила, действующая на частицу, называется консервативной, а соответствующее поле – полем консервативной силы, если работа, совершаемая этой силой при перемещении частицы по произвольному замкнутому контуру, будет равна нулю.

К консервативным силам и соответствующим полям относятся сила всемирного тяготения и, в частности, сила тяжести (гравитационное поле), сила Кулона (электростатическое поле), сила упругости (поле сил, действующих на тело, прикрепленное к некоторой точке упругой связью).

Примерами неконсервативных сил являются сила трения, сила сопротивления среды движению тела.

Только для взаимодействий, которым соответствуют консервативные силы, может быть введено понятие потенциальной энергии.

Под потенциальной энергией
механической системы понимается величина, убыль которой (разность начального и конечного значений) при произвольном изменении конфигурации системы (изменении положения частиц в пространстве) равна работе
, совершаемой при этом всеми внутренними консервативными силами, действующими между частицами этой системы:

, (6.15)

где
- потенциальная энергия системы в начальной и конечной конфигурации.

Заметим, что убыль
равна с обратным знаком приращению (изменению)
потенциальной энергии и поэтому соотношение (6.15) можно записать в виде

. (6.16)

Такое определение потенциальной энергии системы частиц позволяет находить ее изменение при изменении конфигурации системы, но не само значение потенциальной энергии системы при заданной конфигурации. Поэтому во всех конкретных случаях уславливаются, при какой конфигурации системы (нулевой конфигурации) ее потенциальная энергия
принимается равной нулю (
). Тогда потенциальная энергия системы при любой ее конфигурации
, а из (6.15) следует, что

, (6.17)

то есть потенциальная энергия системы частиц некоторой конфигурации равна работе
, совершаемой внутренними консервативными силами при изменении конфигурации системы от данной до нулевой.

Потенциальная энергия тела, находящегося в однородном поле силы тяжести вблизи поверхности Земли, принимается равной нулю при нахождении тела на поверхности Земли. Тогда потенциальная энергия притяжения к Земле тела, находящегося на высоте h , равна работе силы тяжести
, совершаемой при перемещении тела с этой высоты на поверхность Земли, то есть на расстояниеh по вертикали:

Потенциальная энергия тела, прикрепленного к фиксированной точке упругой связью (пружиной), принимается равной нулю при недеформированной связи. Тогда потенциальная энергия упруго деформированной (растянутой или сжатой на величину
) пружины с коэффициентом жесткостиk равна

. (6.19)

Потенциальная энергия гравитационного взаимодействия материальных точек и электростатического взаимодействия точечных зарядов принимается равной нулю, если эти точки (заряды) удалены на бесконечное расстояние друг от друга. Поэтому энергия гравитационного взаимодействия материальных точек массами и
, находящихся на расстоянииr друг от друга, равна работе силы всемирного тяготения
, совершенной при изменении расстоянияx между точками от x=r до
:

. (6.20)

Из (6.20) следует, что потенциальная энергия гравитационного взаимодействия материальных точек при указанном выборе нулевой конфигурации (бесконечном удалении) оказывается отрицательной при размещении точек на конечном расстоянии друг от друга. Это связано с тем, что сила всемирного тяготения есть сила притяжения, и ее работа при удалении точек друг от друга отрицательна. Отрицательность потенциальной энергии означает, что при переходе этой системы из произвольной конфигурации в нулевую (при удалении точек с конечного расстояния на бесконечное) ее потенциальная энергия увеличивается.

Аналогично, потенциальная энергия электростатического взаимодействия точечных зарядов в вакууме равна

(6.21)

и отрицательна для притягивающихся разноименных зарядов (знаки иразличны) и положительна для отталкивающихся одноименных зарядов (знакииодинаковы).

Полной механической энергией системы (механической энергией системы)
называется сумма ее кинетической и потенциальной энергий

. (6.22)

Из (6.22) следует, что изменение полной механической энергии складывается из изменения ее кинетической и потенциальной энергии

Подставим в формулу (6.33) формулы (6.14) и (6.16). В формуле (6.14) общую работу
всех сил, действующих на точки системы, представим как сумму работы сил, внешних по отношению к рассматриваемой системе,
и работы внутренних сил, которая, в свою очередь, складывается из работы внутренних консервативных и неконсервативных сил,

:

После подстановки получим, что

Для замкнутой системы
0. Если система к тому же консервативна, то есть в ней действуют только внутренние консервативные силы, то и
=0. В этом случае уравнение (6.24) принимает вид
, а это означает, что

Уравнение (6.2) есть математическая запись закона сохранения механической энергии, который гласит: полная механическая энергия замкнутой консервативной системы постоянна, то есть не изменяется со временем.

Условие
0 выполняется, если в системе действуют и неконсервативные силы, но их работа равна нулю, как, например, при наличии сил трения покоя. В этом случае для замкнутой системы закон сохранения механической энергии также применим.

Отметим, что при
отдельные слагаемые механической энергии: кинетическая и потенциальная энергия, - не обязаны оставаться постоянными. Они могут изменяться, что сопровождается совершением работы консервативными внутренними силами, но изменения потенциальной и кинетической энергии
и
равны по модулю и противоположны по знаку. Например, за счет совершения внутренними консервативными силами работы над частицами системы ее кинетическая энергия возрастет, но при этом на равную величину уменьшится ее потенциальная энергия.

Если же в системе совершают работу неконсервативные силы, то это обязательно сопровождается взаимными превращениями механической и иных видов энергии. Так, совершение работы неконсервативными силами трения скольжения или сопротивления среды обязательно сопровождается выделением тепла, то есть переходом части механической энергии во внутреннюю (тепловую) энергию. Неконсервативные силы, работа которых приводит к переходу механической энергии в тепловую, называются диссипативными, а сам процесс перехода механической энергии в тепловую - диссипацией механической энергии.

Есть множество неконсервативных сил, работа которых, напротив, ведет к увеличению механической энергии системы за счет иных видов энергии. Например, в результате химических реакций происходит взрыв снаряда; при этом осколки получают прибавку механической (кинетической) энергии за счет работы неконсервативной силы давления расширяющихся газов - продуктов взрыва. В этом случае посредством совершения работы неконсервативных сил произошел переход химической энергии в механическую. Схема взаимных превращений энергии при совершении работы консервативными и неконсервативными силами представлена на рисунке 6.3.

Таким образом, работа есть количественная мера превращения одних видов энергии в другие. Работа консервативных сил равна количеству потенциальной энергии, перешедшей в кинетическую или наоборот (общая механическая энергия при этом не изменяется), работа неконсервативных сил равна количеству механической энергии, перешедшей в другие виды энергии или наоборот.

Рисунок 6.3 - Схема превращений энергии.

Всеобщий закон сохранения энергии фактически есть закон неуничтожимости движения в природе, а закон сохранения механической энергии - закон неуничтожимости механического движения при определенных условиях. Изменение же механической энергии при невыполнении этих условий не означает уничтожения движения или его появления ниоткуда, а свидетельствует о превращении одних форм движения и взаимодействия материи в другие.

Обратим внимание на отличие обозначений бесконечно малых величин. Например, dx обозначает бесконечно малое приращение координаты,
- скорости,dE – энергии, а бесконечно малую работу обозначают
. Это отличие имеет глубокий смысл. Координаты и скорость частицы, ее энергия и многие другие физические величины являются функциями состояния частицы (системы частиц), то есть определяются текущим состоянием частицы (системы частиц) и не зависят от того, какими были предшествующие состояния, и от того, каким способом частица (система) пришла в текущее состояние. Изменение такой величины можно представить как разность значений этой величины в конечном и начальном состояниях. Бесконечно малое изменение такой величины (функции состояния) называется полным дифференциалом и для величиныX обозначается dX .

Такие же величины, как работа или количество теплоты, характеризуют не состояние системы, а способ, которым был реализован переход из одного состояния системы в другое. Например, говорить о наличии работы у системы частиц в каком-то заданном состоянии бессмысленно, но можно говорить о работе, совершенной силами, действующими на систему, при ее переходе из одного состояния в другое. Таким образом, не имеет смысла говорить и о разности значений такой величины в конечном и начальном состояниях. Бесконечно малое количество величины Y , не являющейся функцией состояния, обозначается
.

Отличительным признаком функций состояния является то, что их изменения в процессах, в которых система, выйдя из исходного состояния, в него же и возвращается, равны нулю. Механическое состояние системы частиц задается их координатами и скоростями. Поэтому, если в результате некоторого процесса механическая система возвращается в исходное состояние, то координаты и скорости всех частиц системы принимают первоначальные значения. Механическая энергия, как величина, зависящая только от координат и скоростей частиц, также примет исходное значение, то есть не изменится. В то же время работа, совершенная силами, действующими на частицы, будет отлична от нуля, причем ее значение может быть разным в зависимости от вида траекторий, описанных частицами системы.

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

При имеющейся замкнутой механической системе тела взаимодействуют посредством сил тяготения и упругости, тогда их работа равняется изменению потенциальной энергии тел с противоположным знаком:

A = – (E р 2 – E р 1) .

Следуя из теоремы о кинетической энергии, формула работы примет вид

A = E k 2 - E k 1 .

Отсюда следует, что

E k 2 - E k 1 = – (E р 2 – E р 1) или E k 1 + E p 1 = E k 2 + E p 2 .

Определение 1

Сумма кинетической и потенциальной энергии тел , составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной .

Данное утверждение выражает закон сохранения энергии в замкнутой системе и в механических процессах, являющийся следствием законов Ньютона.

Определение 2

Закон сохранения энергии выполняется при взаимодействии сил с потенциальными энергиями в замкнутой системе.

Пример N

Примером применения такого закона служит нахождение минимальной прочности легкой нерастяжимой нити, которая удерживает тесло с массой m , вращая его вертикально относительно плоскости (задачи Гюйгенса). Подробное решение изображено на рисунке 1 . 20 . 1 .

Рисунок 1 . 20 . 1 . К задаче Гюйгенса, где F → принимается за силу натяжения нити в нижней точке траектории.

Запись закона сохранения полной энергии в верхней и нижней точках принимает вид

m v 1 2 2 = m v 2 2 2 + m g 2 l .

F → располагается перпендикулярно скорости тела, отсюда следует вывод, что она не совершает работу.

Если скорость вращения минимальная, то натяжение нити верхней точке равняется нулю, значит, центростремительное ускорение может быть сообщено только при помощи силы тяжести. Тогда

m v 2 2 l = m g .

Исходя из соотношений, получаем

v 1 m i n 2 = 5 g l .

Создание центростремительного ускорения производится силами F → и m g → с противоположными направлениями относительно друг друга. Тогда формула запишется:

m v 1 2 2 = F - m g .

Можно сделать вывод, что при минимальной скорости тела в верхней точке натяжение нити будет равняться по модулю значению F = 6 m g .

Очевидно, что прочность нити обязана превышать значение.

С помощью закона сохранения энергии посредством формулы можно получить связь между координатами и скоростями тела в двух разных точках траектории, не используя анализ закона движения тела во всех промежуточных точках. Данный закон позволяет заметно упрощать решение задач.

Реальные условия для движущихся тел предполагают действия сил тяготения, упругости, трения и сопротивления данной среды. Работа силы трения зависит от длины пути, поэтому она не является консервативной.

Определение 3

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

Рисунок 1 . 20 . 2 . Проект вечного двигателя. Почему данная машина не будет работать?

Существует большое количество таких проектов. Они не имеют право на существование, так как при расчетах отчетливо видны одни ошибки конструкций всего прибора, другие замаскированы. Попытки реализовать такую машину тщетны, так как они противоречат закону сохранения и превращения энергии, поэтому нахождение формулы не даст результатов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сообщение от администратора:

Ребята! Кто давно хотел выучить английский?
Переходите по и получите два бесплатных урока в школе английского языка SkyEng!
Занимаюсь там сам - очень круто. Прогресс налицо.

В приложении можно учить слова, тренировать аудирование и произношение.

Попробуйте. Два урока бесплатно по моей ссылке!
Жмите

Один из наиболее важных законов, согласно которому физическая величина - энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе энергия может только превращаться из одной формы в другую, но ее количество остается постоянным.

Для того, чтоб понять что же представляет из себя закон и откуда это получается возьмем тело массой m, которое уроним на Землю. В точке 1 тело у нас находится на высоте h и покоится (скорость равна 0). В точке 2 тело тело имеет некоторую скорость v и находится на расстоянии h-h1. В точке 3 тело имеет максимальную скорость и оно почти лежит на нашей Земле, то есть h=0

В точке 1 тело имеет только потенциальную энергию, так как скорость тела равно 0,так что полная механическая энергия равна.

После того как мы тело отпустили, оно стало падать. При падении потенциальная энергия тела уменьшается, так как уменьшается высота тела над Землей, а его кинетическая энергия увеличивается, так как увеличивается скорость тела. На участке 1-2 равном h1 потенциальная энергия будет равна

А кинетическая энергия будет равная в тот момент ( - скорость тела в точке 2):

Чем ближе тело становится к Земле, тем меньше его потенциальная энергия, но в тот же момент увеличивается скорость тела, а из-за этого и кинетическая энергия. То есть в точке 2 работает закон сохранения энергии: потенциальная энергия уменьшается, кинетическая растет.

В точке 3 (на поверхности Земли) потенциальная энергия равна нулю (так как h = 0), а кинетическая максимальна (где v3 - скорость тела в момент падения на Землю). Так как , то кинетическая энергия в точке 3 будет равна Wk=mgh. Следовательно, в точке 3 полная энергия тела W3=mgh и равна потенциальной энергии на высоте h. Конечная формула закона сохранения механической энергии будет иметь вид:

Формула выражает закон сохранения энергии в замкнутой системе, в которой действуют только консервативные силы: полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.

В Формуле мы использовали.