Как преобразовать кинетическую энергию в электрическую. Преобразователь кинетической энергии в электрическую. Что можно сказать о методах прямого преобразования энергии

Если вы думали, что вашему мобильному телефону пригодился бы микро-генератор, то вы не единственный, кто так думает. Финская компания Nokia запатентовала пьезоэлектрический коллектор кинетической энергии, предназначенный обеспечить дополнительное питание для портативной электроники. В устройстве, например, в мобильном телефоне, батарея будет установлена ​​на маленьких рельсах, что позволит ей двигаться при вашей ходьбе вверх и вниз и при этом производить электроэнергию. А в чрезвычайной ситуации вы сможете еще и встряхнуть ваш телефон и этим дать телефону дополнительную порцию энергии.

4. Солнечно-тепловые генераторы

Зачем полагаться только на один способ генерации энергии, когда вы можете воспользоваться двумя в то же время? Fujitsu создала тонкие и гибкие устройства, которые работают одновременно и как солнечные панели, и как термоэлектрический генератор. Это означает, что вы можете создавать в два раза больше энергии, либо можете генерировать ее достаточное количество, если совершенно темно или совсем холодно. Вы сможете генерировать энергию даже, если достаточно темно и прилично холодно одновременно. Это устройство довольно универсальное, и, что еще лучше, должно быть достаточно простым и дешевым в производстве. Ищите его в коммерческих продуктах ближе к 2015 году.

5. Гибкий нано-генератор

Никто не хочет носить с собой личные генераторы энергии, которые являются громоздкими и раздражают при каждом шагу. Идеальные системы будут настолько плотно и незаметно интегрированы в нашу жизнь, что мы не будем даже замечать, что являемся ходячими электростанциями. Один из способов – это просто все сделать супер-крошечным, т. е. нано-размеров. Вы не будете получать много энергии из настолько маленьких генераторов, но это не будет иметь значения, так как их будет очень много. Исследователи Georgia Tech выяснили, как внедрять крошечные пьезоэлектрические нано-провода на гибкие листы полимера, и когда листы сжимаются, провода качают электричество. Если такие генераторы встроить в ткань одежды, то они будут генерировать энергию при каждом вашем движении.

6. Прозрачная солнечная панель

Являются отличным источником электроэнергии, но все, что имеет на себе панель солнечных батарей, не может быть использовано для выполнения еще какой-то задачи. С другой стороны, если солнечные панели можно было бы как-то сделать прозрачными, то их могли бы пристроить к любому устройству, и они были бы незаметными. В данный момент можем сказать: “Добро пожаловать в будущее!”, потому что французская компания под названием Wysips разработала совершенно невидимую солнечную панель в виде пленки. Толщиной в 100 микронов, ее можно интегрировать в дисплей мобильного телефона, где она может в течении часа от солнечных лучей собрать достаточно энергии, чтобы обеспечить телефонный разговор длительностью солидных 30 минут. На рынке подобные устройства могут появиться в течение этого года.

7. Солнечная ткань

Военные всегда очень интересовались возможностью использовать личные вещи для производства энергии, поскольку в настоящее время солдаты таскают сумасшедшее количество батарей для питания всего своего оборудования, что конечно утомляет солдат. Научный центр инженерно-физических исследований в Великобритании работает над проектом военной формы, которая должна функционировать как генератор, который собирает солнечную энергию непосредственно через новый тип ткани. Термоэлектрический компонент также может генерировать электричество, когда темно или туманно, пока он теплый, а в качестве дополнительной пользы данный компонент сможет уменьшить инфракрасный силуэт солдата. Прототип системы должен быть готов к декабрю, и, рано или поздно, неизбежно перейдет в свой коммерческий этап.

8. Персональная панель солнечных батарей

Для ближайшего будущего, солнечные панелей являются одним из самых дешевых и самых надежных способов сбора электроэнергии, особенно если вы живете где-то, где хорошо и солнечно большую часть времени года. Есть много различных персональных систем солнечных панелей, но Solio является одним из самых умных. На самом деле, устройство состоит из трех солнечных панелей, которые открываются как цветок, и вы можете через центральное отверстие вставить карандаш, чтобы подпирать его под оптимальным углом относительно Солнца. В нем есть и встроенный аккумулятор, чтобы обеспечить хранение полученной электроэнергии для времени дня, когда становится темно. Весь комплект должен стоить около $ 70.

9. Ветровая микро-турбина

Энергия ветра становится все больше значимым источником электроэнергии, особенно когда ветровые турбины становятся все более и более гигантскими. Вам лично для повседневной жизни не нужно потенциала гигантских турбин, так что ваша собственная маленькая микро-турбина вполне может быть в состоянии удовлетворить некоторые из ваших потребностей в электроэнергиеи. HYmini персональная ветровая турбина предназначена для монтажа на велосипеде или на руку, когда вы бежите трусцой, при чем ее вращающиеся лезвия генерируют электричество для зарядки встроенной батареи. При цене всего $ 50 за штуку, вы могли бы купить целое стадо из них, и наклеить их на всю поверхность вашего электрического автомобиля. Пока вы едете достаточно быстро или паркуетесь рядом с ураганом, вам никогда снова не придется зависеть от наличия электросети.

Группа российских ученых изобрела уникальное устройство, которое позволяет производить огромное количество бесплатной электроэнергии.

Известный российский ученый А.О. Шахинов сказал о нем: "Это изобретение очень актуально для нашего XXI века. Так в свое время, когда была изобретена гидроэлектростанция, случился переворот, можно было получать энергию, не затрачивая на это ресурсов и так уже истощившегося запаса полезных ископаемых земного шара".

Устройство производит электроэнергию буквально из воздуха. Такой преобразователь энергии особенно подходит для больших современных городов.

Это не гидроэлектростанция, для которой обязательно требуется река.

Это не приливно/отливная станция, для которой обязательно требуется море или озеро. И это не ветряные электростанции, которые работают только в том случае, если есть ветер. Наш преобразователь энергии действует в любом современном городе и не зависит от воды, ветра, прилива или отлива.

Суть изобретения: специальные встраиваемые панели в дороги города.

При совершении наезда любым видом транспорта на такую панель вырабатывается энергия. Причем вырабатывается очень большое количество энергии. Обратите внимание на то, что если поставить такую панель на оживленном шоссе, то энергия будет поступать бесконечно.

По подсчетам наших специалистов, два таких устройства смогут питать круглые сутки большой 9-этажный 108-квартирный дом! Заметьте, что никаких затрат, кроме первоначальной покупки и установки преобразователя, не требуется. Такой дом не будет зависеть ни от каких электростанций, кроме своей собственной - локальной.

При постройке новых домов можно добавлять в проект наш преобразователь. И спрос на такое жилье будет поистине большим. Ведь кому хочется покупать квартиру, за электроэнергию в которой постоянно надо платить, - если можно купить жилье, в котором можно жить и не переживать за повышение цен на электроэнергию. Энергия в таких домах будет совершенно бесплатна.

Но не только жилые дома могут черпать энергию из преобразователя. Ведь везде существуют предприятия, которые нуждаются в постоянном источнике электропитания.

Вот один из вариантов. Если в аэропорту поставить пару преобразователей, то аэропорт не будет нуждаться в подводке проводов от других электростанций, которые расположены, как всегда, совсем не рядом. Помимо того, что не будет лишних затрат на километры проводов, не будет и надобности оплачивать бесконечное количество счетов от электростанций, которые отнимают значительную часть прибыли. Такой аэропорт сможет забыть про квитанции об оплате электроэнергии. В них отпадет надобность.

Возьмем город в целом. Если вдоль главной трассы поставить 100 таких устройств, то такая дорога будет питать весь город. Значительно улучшатся экологические показатели. А громоздкие сооружения в виде страшных дымящих труб исчезнут.

То есть это - экологически чистый, безопасный и бесплатный способ выработки энергии.

Преобразователь представляет собой редуктор с накопителем энергии - маховиком, который раскручивается за счет поступательного движения толкателя и поворота зубчатого сектора привода. Толкатель вертикально утапливается шарнирным соединением двух металлических площадок на всю ширину проезжей части, имеющих оптимальную длину по 20 метров в обе стороны от шарнира, причем верхняя точка шарнира от плоскости дорожного покрытия находится на высоте 0,5 метра.

Транспортное средство, двигаясь по площадкам, утапливает толкатель через шарнир, раскручивая маховик - накопитель энергии.

После прохождения транспортного средства по площадкам последние возвращаются в исходное положение простейшим механизмом возврата.

Таким образом преобразователь использует вторичный источник энергии, первичный (нефть, газ, уголь) уже затрачен на движение транспортного средства, при этом электрические транспортные средства можно перевести на непосредственное питание от преобразователей, установленных на маршрутах движения.

Проект готов к реализации, причем организация проекта осуществляется на базе любого машиностроительного предприятия и не изменяет принципиально и по существу действующую на нем организацию производства.

Преобразователь содержит силовой блок, включающий кинематически связанные между собой грузовой и уравнивающий механизмы и вал потребителя энергии. Грузовой механизм выполнен в виде двух подвижных шарнирно-соединенных между собой платформ. Платформы установлены своими опорными сторонами с возможностью возвратно-поступательного движения опорных сторон по направлению продольной оси дороги. Платформы являются частью проезжей части дороги. Ось шарнирного соединения платформ ориентирована параллельно опорным сторонам платформ и перпендикулярно продольной оси дороги.

Уравновешивающий механизм выполнен в виде механизма возврата, который содержит по меньшей мере два кронштейна, размещенных по обе стороны дороги, по меньшей мере два блока, размещенных на кронштейнах, по меньшей мере два груза и по меньшей мере два троса, каждый из которых одним своим концом через блок соединен с одним из грузов, а вторым - с грузовым механизмом непосредственно у шарнирного соединения. Кинематическая связь грузового механизма с валом потребителя энергии осуществляется посредством силового привода.

Силовой привод содержит толкатель, шатун, зубчатый сектор, храповой механизм с ведущей и ведомой шестернями, ведущую шестерню вала потребителя энергии и ведомую шестерню вала потребителя энергии, жестко соединенную с этим валом.

В 1998 году его для нас оценила оценочная компания (опытный образец) - 48 тыс. дол. Но это без вмонтирования устройства в дорогу.

С вмонтированием оного в дорогу получится примерно вдвое больше, т.е. около 100 тыс. дол.

Период окупаемости проекта - 1 год.

А. Н. БЕРЕКЕЛЯ

Атмосфера Земли представляет собой огромный и неиссякаемый источник энергии. Постоянное движение воздушных масс имеет гигантскую кинетическую энергию, об истинных размерах которой можно только догадываться. Достаточно рассмотреть последствия любого урагана или просто шквалистого ветра, чтобы получить представление о масштабах имеющихся запасов энергии, использование которой пока еще ведется на минимальном уровне.

Наличие более эффективных способов производства электроэнергии ограничило активность исследовательских работ в этой области, которые были возобновлены относительно недавно. Нехватка углеводородных источников, разразившийся топливно-энергетический кризис заставляют пересматривать отношение к альтернативным вариантам производства электроэнергии, лидером среди которых является .

Энергия ветра на службе у человека

На сегодняшний день существуют полноценные электростанции, вырабатывающие электроэнергию при помощи потоков ветра. Их довольно много, таких станций насчитывается около 20 тыс. При этом, утверждать, что человек подчинил себе энергию ветра и использует ее вполне эффективно, преждевременно. Несмотря на значительные объемы полученной энергии, возможности ветроэнергетики пока еще далеки от идеала.

Существующие установки обладают недостаточной эффективностью, вызванной сложностью условий эксплуатации и невозможностью регулирования воздушных потоков. Их неравномерность - одна из ключевых причин, сдерживающих развитие отрасли. Ведущиеся исследования в этой области выдают предельную величину - 59,3 % , что намного выше, чем реально существующие значения, но недостаточно в целом.

Понимание важности и большого потенциала ветроэнергетики в обществе постоянно укрепляется. Больших успехов в этой области достигли Китай и Индия, обладающие .

Особенностью отрасли является возобновляемый характер источника энергии, возможность бесконечного пользования ресурсом. В этом отношении ветроэнергетика является наиболее устойчивой по сравнению с другими способами производства электричества.

Исследования и разработки ведутся постоянно, их интенсивность в последнее время заметно усилилась. Появляются совершенно новые модели, использующие методики, отличные от распространившихся ныне. Активность конструкторов и исследователей сама по себе является свидетельством возрастания роли ветроэнергетики и гарантией увеличения количества ветрогенераторов в будущем.

Устройство для преобразования

Для того, чтобы кинетическую энергию ветра трансформировать в электрическую, необходимо использовать соответствующее оборудование. Наиболее распространенным устройством для преобразования является ветрогенератор . Это агрегат, состоящий из нескольких узлов, выполняющих задачи по приему, передаче и преобразованию энергии потока ветра в электричество.

Существует множество вариантов конструкции ветряков, выполняющих одну и ту же функцию при помощи рабочего колеса с лопастями. Отличие всех видов конструкции состоит в направлении оси вращения и в конструкции вращающегося узла - ротора.

Ветрогенераторы делятся на две большие группы, имеющие разное расположение оси вращения:

  • горизонтальные
  • вертикальные

Наиболее эффективными считаются горизонтальные устройства, напоминающие пропеллер самолета. Поток ветра, воздействующий на лопасти, используется максимально возможным образом, практически без потерь. При этом, имеется постоянная необходимость коррекции положения оси в зависимости от направления ветра, что вынуждает использовать дополнительные приспособления и устройства. Наиболее простым и эффективным среди них является хвостовой стабилизатор, аналогичный хвосту самолета, автоматически устанавливающий ветряк по ветру.

Вертикальные конструкции имеют важное достоинство - независимость от направления ветра. При этом, эффективность таких устройств несколько ниже, так как поток одновременно воздействует как на рабочую, так и на обратную сторону лопастей, создавая уравновешивающее усилие. Оно останавливает вращение ротора, вынуждая прибегать к различным конструктивным ухищрениям. Так, используются различные кожухи, закрывающие обратные стороны лопастей.

Также применяют наружные конструкции, прикрывающие доступ потока к тыльным частям лопастей, спрямляющие устройства, направляющие поток в нужную сторону и т.д.

Практические результаты показали наибольшую эффективность горизонтальных установок в составе промышленных электростанций и выгоду использования вертикальных конструкций для обеспечения энергией отдельных домовладений.

Принципы работы ветрогенератора

Ветрогенератор является агрегатом, состоящим из нескольких узлов. Они выполняют отдельные задачи, являясь звеньями в цепи последовательных изменений вида энергии.

  • поток воздуха, взаимодействуя с крыльчаткой ветряка, заставляет ее вращаться
  • движение вала передается на генератор, который производит электрический ток
  • с генератора напряжение через выпрямитель подается на аккумулятор, заряжая его
  • за уровнем заряда следит специальное устройство - контроллер, отключающее питание и включающее его снова по необходимости
  • с аккумулятора заряд подается на инвертор, приводящий полученный ток в соответствующее состояние (220 В, 50 Гц) и передающий его потребителям

Небольшие устройства иногда работают по упрощенной схеме, подавая напряжение непосредственно с генератора потребителям. Это возможно для питания водяных насосов или освещения участка, теплицы и т.д.

Производительность ветрогенератора зависит от параметров собственно генератора, размеров и конструкции крыльчатки. Кроме того, важным параметром является преобладающая скорость ветра в регионе, обеспечивающая базовый режим вращения ротора и определяющая производительность всего комплекса.

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля - сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Эту цепочку в которой происходит преобразование энергии из одной формы в другую можно было бы продолжать бесконечно.

Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели . Генераторы предназначены для выработки электрической энергии, а электродвигатели - для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.

В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции - паровой турбиной, .

Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии, или, как говорят, включить в электрическую сеть.

Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. имеют место при работе как генератора, так и электродвигателя. Поэтому часто говорят о генераторном и двигательном режимах работы электрических машин.

Во вращающихся электрических машинах в процессе преобразования энергии участвуют две основные части: якорь и индуктор со своими обмотками, которые перемещаются относительно друг друга. Индуктор создает в машине магнитное поле. В обмотке якоря . и возникает электрический ток. При взаимодействии тока в обмотке якоря с магнитным полем создаются электромагнитные силы, посредством которых реализуется процесс преобразования энергии в машине.

Об осуществлении в электрической машине энергопреобразовательного процесса

Из основных электроэнергетических теорем Пуанкаре и Баркгаузена вытекают следующие положения:

1) непосредственное взаимообратное преобразование механической и электрической энергии возможно только в том случае, если электрическая энергия является энергией переменного электрического тока;

2) для осуществления процесса такого энергопреобразования необходимо, чтобы в системе электрических контуров, предназначаемых для этой цели, была либо изменяющаяся электрическая индуктивность, либо изменяющаяся электрическая емкость,

3) для осуществления преобразования энергии переменного электрического тока в энергию постоянного электрического тока, необходимо, чтобы в предназначаемой для этой цели системе электрических контуров имелось изменяющееся электрическое сопротивление.

Из первого положения следует, что механическая энергия может преобразоваться в электрической машине только в энергию переменного электрического тока или обратно.

Кажущееся противоречие этого утверждения с фактом существования электрических машин постоянного тока разрешается тем, что в "машине постоянного тока" мы имеем двустадийное преобразование энергии.

Так, в случае электромашинного генератора постоянного тока мы имеем машину, в которой механическая энергия преобразуется в энергию переменного тока, а эта последняя, вследствие наличия особого устройства, представляющего собой "изменяющееся электрическое сопротивление", преобразуется в энергию постоянного тока.

В случае электромашинного двигателя процесс идет, очевидно, в обратном направлении: подводимая к электромашинному двигателю энергия постоянного электрического тока преобразуется посредством упомянутого изменяющегося сопротивления в энергию переменного электрического тока, а последняя - в энергию механическую.

Роль упомянутого изменяющегося электрического сопротивления выполняет "скользящий электрический контакт", который в обычной "коллекторной машине постоянного тока" состоит из "электромашинной щетки" и "электромашинного коллектора", а в «униполярной электрической машине постоянного тока" из "электромашинной щетки" и "электромашинных контактных колец".

Так как для создания в электрической машине процесса энергопреобразования необходимо наличие в ней или "изменяющейся электрической индуктивности", или "изменяющейся электрической емкости", то электрическую машину можно выполнить либо на принципе электромагнитной индукции, либо на принципе электрической индукции. В первом случае получаем "индуктивную машину", во втором - "емкостную машину".

Емкостные машины не имеют пока практического значения. Применяемые в промышленности, на транспорте и в быту электрические машины представляют собой индуктивные машины, за которыми на практике укоренилось краткое наименование "электрическая машина", являющееся, по существу, более широким понятием.

Принцип действия электрического генератора.

Простейшим электрическим генератором является виток, вращающийся в магнитном поле (рис. 1, а). В этом генераторе виток 1 представляет собой обмотку якоря. Индуктором служат постоянные магниты 2, между которыми вращается якорь 3.


Рис. 1. Принципиальные схемы простейших генератора (а) и электродвигателя (б)

При вращении витка с некоторой частотой вращения n его стороны (проводники) пересекают магнитные силовые линии потока Ф и в каждом проводнике индуцируется э. д. с. е. При принятом на рис. 1, а направлении вращения якоря э. д. с. в проводнике, расположенном под южным полюсом, согласно правилу правой руки направлена от нас, а э. д. с. в проводнике, расположенном под северным полюсом, - к нам.

Если подключить к обмотке якоря приемник электрической энергии 4, то по замкнутой цепи пойдет электрический ток I. В проводниках обмотки якоря ток I будет направлен так же, как и э. д. с. е.

Выясним, почему для вращения якоря в магнитном поле приходится затрачивать механическую энергию, получаемую от дизеля или турбины (первичного двигателя). При прохождении тока i по расположенным в магнитном поле проводникам на каждый проводник действует электромагнитная сила F.

При указанном на рис. 1, а направлении тока согласно правилу левой руки на проводник, расположенный под южным полюсом, будет действовать сила F, направленная влево, а на проводник, расположенный под северным полюсом, - сила F, направленная вправо. Указанные силы создают совместно электромагнитный момент М, направленный по часовой стрелке.

Из рассмотрения рис. 1, а видно, что электромагнитный момент М, возникающий при отдаче генератором электрической энергии, направлен в сторону, противоположную вращению проводников, поэтому он является тормозным моментом, стремящимся замедлить вращение якоря генератора.

Для того чтобы предотвратить остановку якоря, требуется к валу якоря приложить внешний вращающий момент Мвн, противоположный моменту М и равный ему по величине. С учетом же трения и других внутренних потерь в машине внешний вращающий момент должен быть больше электромагнитного момента М, созданного током нагрузки генератора.

Следовательно, для продолжения нормальной работы генератора к нему необходимо подводить извне механическую энергию - вращать его якорь каким-либо двигателем 5.

При отсутствии нагрузки (при разомкнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе.

При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Рэл, увеличиваются ток I, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Рмх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является:

1. совпадение по направлению тока i и э. д. с. в проводниках обмотки якоря. Это указывает на то, что машина отдает электрическую энергию;

2. возникновение электромагнитного тормозного момента М, направленного против вращения якоря. Из этого вытекает необходимость получения машиной извне механической энергии.

Принцип действия электрического двигателя.

Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток 1 (рис. 1,б), расположенный на якоре 3, который вращается в магнитном поле полюсов 2. Проводники витка образуют обмотку якоря.

Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток I. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.

При указанном на рис. 1, б направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом,- сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой n . Если соединить вал якоря с каким-либо механизмом или устройством 7 (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент Мвн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направление которой определяется но правилу правой руки. Следовательно, при указанном на рис. 1, б направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Из рис. 1, б видно, что э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. Е, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

1. совпадение по направлению электромагнитного момента М и частоты вращения n. Это характеризует отдачу машиной механической энергии;

2. возникновение в проводниках обмотки якоря э. д. с., направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Принцип обратимости электрических машин

Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего.

Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током.

Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин . Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Рис. 2. Направление э. д. с. Е, тока I, частоты вращения якоря n и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Для выяснения этого положения рассмотрим работу при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. E. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 2, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую.

Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 2, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения n . Совпадение по направлению э. д. с. Е и тока I означает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию.

Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E < U машина работает двигателем, при E > U - генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.