Бинарные отношения на множестве. Понятие отношения на множестве

Пусть A - множество. Если задано некоторое подмножество его декартового квадрата, другими словами, задано некоторое подмножество упорядоченных пар , где , то говорят, что на множестве A задано бинарное отношение R . Пишут или .В качестве примеров бинарных отношений на числовых множествах можно рассмотреть хорошо известные из арифметики отношения: ,=”,<”,£”,>”,³”.

Бинарное отношение называется:

Рефлексивным, если для любого

Иррефлексивным, если для любого ;

Симметричным, если из следует ;

Антисимметричным, если и следует a=b ;

Транзитивным, если из и следует ;

Отношение,=” рефлексивно, симметрично и транзитивное, отношения,<” и,>” транзитивны и иррефлексивны, отношения,£” и,³”. рефлексивны, антисимметричны и транзитивны. Последние свойства выбираются в качестве определяющих для отношения частичного порядка на множестве A .

Определение. Бинарное отношение R на множестве A называется отношением частичного порядка, если оно рефлексивно, антисимметрично и транзитивно,

Если , то будем считать элемент a предшествующим элементу b и записывать отношение aRb в виде . Если для любых двух элементов имеет место хотя бы одно из отношений или , то частичный порядок называется полным или линейным порядком.

Примером частичного порядка является система множеств, упорядоченных по включению: . Числовые множества с обычным отношением, £” дают примеры линейных порядков.

Пусть £ > - частично упорядоченное множество. Элемент называется минимальным, если из следует . Минимальных элементов может быть больше одного. Элемент называется наименьшим, если для любого . Если в A имеется наименьший элемент, то он единственен. Аналогично определяются максимальный и наибольший элемент.

Обобщением понятия равенства является отношение эквивалентности.

Определение . Бинарное отношение R на множестве A называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Отношение эквивалентности разбивает множество A на непересекающиеся подмножества, называемые классами эквивалентности. Если в качестве A рассмотреть множество людей, проживающих в домах некоторого города, то отношение проживания в одном доме будет отношением эквивалентности. Более математическим примером является отношение сравнения по модулю n в множестве целых чисел Z : , если делится на n . При этом Z разбивается на классы , характеризуемые остатками от деления на n . Более общим примером является эквивалентность элементов группы G по подгруппе H : если . Классами эквивалентности здесь являются правые смежные классы по подгруппе H .

Бинарные отношения.

Пусть A и B – произвольные множества. Возьмем по одному элементу из каждого множества, a из A, b из B и запишем их так: (сначала элемент первого множества, затем элемент второго множества – т.е. нам важен порядок, в котором берутся элементы). Такой объект будем называть упорядоченной парой . Равными будем считать только те пары, у которых элементы с одинаковыми номерами равны. = , если a = c и b = d. Очевидно, что если a ≠ b, то .

Декартовым произведением произвольных множеств A и B (обозначается: AB) называется множество, состоящее из всех возможных упорядоченных пар, первый элемент которых принадлежит A, а второй принадлежит B. По определению: AB = { | aA и bB}. Очевидно, что если A≠B, то AB ≠ BA. Декартово произведение множества A само на себя n раз называется декартовой степенью A (обозначается: A n).

Пример 5. Пусть A = {x, y} и B = {1, 2, 3}.

AB = {, , , , , }.

BA = {<1, x>, <2, x>, <3, x>, <1, y>, <2, y>, <3, y>}.

AA = A 2 = {, , , }.

BB = B 2 = {<1, 1>, <1, 2>, <1, 3>, <2, 1>, <2, 2>, <2, 3>, <3, 1>, <3, 2>, <3, 3>}.

Бинарным отношением на множестве M называется множество некоторых упорядоченных пар элементов множества M. Если r – бинарное отношение и пара принадлежит этому отношению, то пишут: r или x r y. Очевидно, r Í M 2 .

Пример 6. Множество {<1, 2>, <2, 2>, <3, 4>, <5, 2>, <2, 4>} является бинарным отношением на множестве {1, 2, 3, 4, 5}.

Пример 7. Отношение ³ на множестве целых чисел является бинарным отношением. Это бесконечное множество упорядоченных пар вида , где x ³ y, x и y – целые числа. Этому отношению принадлежат, например, пары <5, 3>, <2, 2>, <324, -23> и не принадлежат пары <5, 7>, <-3, 2>.

Пример 8. Отношение равенства на множестве A является бинарным отношением: I A = { | x Î A}. I A называется диагональю множества A.

Поскольку бинарные отношения являются множествами, то к ним применимы операции объединения, пересечения, дополнения и разности.

Областью определения бинарного отношения r называется множество D(r) = { x | существует такое y, что xry }. Областью значений бинарного отношения r называется множество R(r) = { y | существует такое x, что xry }.

Отношением, обратным к бинарному отношению r Í M 2 , называется бинарное отношение r -1 = { | Î r}. Очевидно, что D(r ‑1) = R(r), R(r ‑1) = D(r), r ‑ 1 Í M 2 .

Композицией бинарных отношений r 1 и r 2 , заданных на множестве M, называется бинарное отношение r 2 o r 1 = { | существует y такое, что Î r 1 и Í r 2 }. Очевидно, что r 2 o r 1 Í M 2 .

Пример 9. Пусть бинарное отношение r задано на множестве M = {a, b, c, d}, r = {, , , }. Тогда D(r) = {a, c}, R(r) = {b, c, d}, r ‑1 = {, , , }, r o r = {, , , }, r ‑1 o r = {, , , }, r o r ‑1 = {, , , , , , }.

Пусть r – бинарное отношение на множестве M. Отношение r называется рефлексивным , если x r x для любого x Î M. Отношение r называется симметричным , если вместе с каждой парой оно содержит и пару . Отношение r называется транзитивным , если из того, что x r y и y r z следует, что x r z. Отношение r называется антисимметричным , если оно не содержит одновременно пары и различных элементов x ¹ y множества M.

Укажем критерии выполнения этих свойств.

Бинарное отношение r на множестве M рефлексивно тогда и только тогда, когда I M Í r.

Бинарное отношение r симметрично тогда и только тогда, когда r = r ‑1 .

Бинарное отношение r на множестве M антисимметрично тогда и только тогда, когда r Ç r ‑1 = I M .

Бинарное отношение r транзитивно тогда и только тогда, когда r o r Í r.

Пример 10. Отношение из примера 6 является антисимметричным, но не является симметричным, рефлексивным и транзитивным. Отношение из примера 7 является рефлексивным, антисимметричным и транзитивным, но не является симметричным. Отношение I A обладает всеми четырьмя рассматриваемыми свойствами. Отношения r ‑1 o r и r o r ‑1 являются симметричными, транзитивными, но не являются антисимметричными и рефлексивными.

Отношением эквивалентности на множестве M называется транзитивное, симметричное и рефлексивное на М бинарное отношение.

Отношением частичного порядка на множестве М называется транзитивное, антисимметричное и рефлексивное на М бинарное отношение r.

Пример 11. Отношение из примера 7 является отношением частичного порядка. Отношение I A является отношением эквивалентности и частичного порядка. Отношение параллельности на множестве прямых является отношением эквивалентности.

которых может быть отрицательной величиной, например, труд. Но потребление труда потребителем не может превосходить естественно определенной величины - 24 часа.

Свойство «продолжаемости вверх» означает, что, потенциально, потребителю доступно неограниченное количество блага. Конечно, этого свойства хотелось бы избежать, и во многих современных работах, например, по общему равновесию, оно отсутствует, но ряд основных классических результатов теории потребителя значительно проще формулируется и получается в случае его выполнения. Действительно, при отсутствии этого свойства мы уже, например, не можем быть уверены о том, что потребитель израсходует весь получаемый им доход (т. е. что выбор потребителя принадлежит бюджетной линии).

Наконец, поясним значение свойства выпуклости. Выпуклость множества X - не такое безобидное и естественное предположение, как может показаться на первый взгляд. Существует достаточное число содержательных экономических вопросов, при изучении которых данное предположение неприемлемо. Например, некоторые из рассматриваемых благ могут потребляться исключительно в дискретных количествах. Подобная ситуация значительно усложняет дело и требует более тонких рассуждений, на которых мы не останавливаемся.

Свойство 0 X имеет достаточно прозрачный смысл, оно фактически означает, что потребитель потенциально может ничего не потреблять. Такая ситуация не означает что это будет его выбором, но мы признаем за ним такую возможность. Иногда бывает удобно предполагать, что множество допустимых альтернатив представляет собой неотрицательный ортант Rl + , т. е. X = Rl + . В дальнейшем, в каждом конкретном случае, будет либо указано, либо ясно из контекста, какой из вышеприведенных случаев имеется в виду8 .

Как мы уже говорили выше, в основе поведения потребителя лежат его предпочтения, в соответствии с которыми он осуществляет выбор между доступными ему наборами из множества допустимых альтернатив. Естественным языком для обсуждения концепции предпочтений является теория бинарных отношений, краткое описание которой дается в следующем параграфе.

2.2 Бинарные отношения и их свойства

Чтобы мотивировать и пояснить понятие бинарного отношения, рассмотрим известную детскую игру «камень-ножницы-бумага». Предполагается, что: камень побеждает ножницы (тупит), ножницы побеждают бумагу (режут), бумага побеждает камень (оборачивает), в остальных случаях (например, камень - камень) - боевая ничья. Будем говорить, что x находится в отношении R к y и писать x R y, в случае, если x побеждает y, где x и y принадлежат множеству {камень, ножницы, бумага}. Естественно отождествить отношение R с множеством, элементами которого являются упорядоченные пары9 hкамень, ножницыi, hножницы, бумагаi, hбумага, каменьi и только они. Отметим, что так определенное отношение (множество) R, очевидно, является подмножеством множества, состоящего из всевозможных упорядоченных пар, где каждый элемент пробегает множество {камень, ножницы, бумага}.

Этот простой пример приводит нас к следующему определению бинарного отношения.

Определение 1:

Пусть X - произвольное непустое множество. Декартовым квадратом множества X назовем множество, обозначаемое X × X , элементами которого являются всевозможные упорядоченные пары hx, yi, где x, y пробегают все множество X . Под бинарным отношением R, заданным на множестве X , будем понимать, некоторое подмножество декартова квадрата X × X , т. е. формально R X × X .

8 Более подробное обсуждение понятия блага и множества допустимых альтернатив см. в книге Э. Маленво:

Лекции по микроэкономическому анализу, М.: Наука, 1985, гл. 1, § 3 и гл. 2, § 4.

9 Выражение «упорядоченная пара» означает, что пары ha, bi и hb, ai считаются различными.

2.2. Бинарные отношения и их свойства

Другими словами бинарное отношение - это некоторое множество упорядоченных пар hx, yi, где x и y - элементы множества X . Понятие бинарного отношения имеет достаточно простую графическую иллюстрацию (см. Рис. 2.1 ).

Рис. 2.1. Бинарное отношение R, заданное на множестве X

При рассмотрении бинарных отношений в случае, когда пара hx, yi принадлежит множеству R, вместо hx, yi R обычно пишут x R y и говорят, что x находится в отношении R к y.

Определим теперь некоторые свойства бинарных отношений, которые мы в дальнейшем будем использовать при рассмотрении предпочтений 10 .

Определение 2:

Бинарное отношение R называется

рефлексивным , если x X выполнено x R x

иррефлексивным 11 , если x R x не выполняется ни при каком x X (т. е. x X(x R x));

симметричным , если x, y X из x R y следует y R x;

Асимметричным , если x, y X из x R y следует, что y R x неверно;

Транзитивным , если x, y, z X выполнено

(x R y и y R z) x R z;

отрицательно транзитивным , если x, y, z X выполнено

((x R y) и(y R z))(x R z);

Полным , если x, y X выполнено либо x R y, либо y R x, либо и то и другое.

Проиллюстрируем эти свойства бинарных отношений на примерах.

11 Часто это свойство также называют нерефлексивностью, но такая терминология приводит к парадоксальным выражениям. Например, «бинарное отношение не является ни рефлексивным, ни нерефлексивным». Чтобы избежать этой игры слов, мы и используем термин «иррефлексивность».

2.2. Бинарные отношения и их свойства

Пусть X - множество студентов, учащихся в этом учебном году в Новосибирском Государственном Университете, R - отношение «выше ростом, чем» заданное на X . Посмотрим, каким из указанных выше свойств удовлетворяет данное бинарное отношение.

Очевидно, что какого бы мы студента ни взяли, его рост не может быть больше его же роста, т. е., например, 175 не может быть больше 175. Таким образом, это отношение является иррефлексивным и не удовлетворяет свойству рефлексивности.

Это отношение также является асимметричным и не является симметричным. Действительно, пусть h(a) - рост некоторого студента a, а h(b) - рост студента b, и a R b, т. е. студент a имеет больший рост, чем b (h(a) > h(b)). Тогда вполне понятно, что неверно (h(b) > h(a)), что и означает, что неверно b R a. Таким образом, с учетом произвольности выбора a и b получили желаемое.

Проверим теперь, что данное отношение является транзитивным. Из множества X возьмем трех произвольных студентов a, b, c, чей рост составляет h(a), h(b) и h(c) соответственно, причем выполнено следующее: h(a) > h(b) и h(b) > h(c). Очевидно, что по свойству сравнения действительных чисел мы имеем, что h(a) > h(c). Это в точности означает, что a R c и мы, таким образом, показали транзитивность R.

Выполнение свойства отрицательной транзитивности мы проверим чуть позже, а сейчас перейдем к проверке свойства полноты. Как несложно понять, данное отношение не является полным, если среди студентов есть хотя бы двое с одинаковым ростом. В этом случае ни один из этих двух студентов не будет выше другого и, таким образом, мы имеем нарушение полноты. Если же среди нашего множества X нет ни одной пары студентов с одинаковым ростом, то введенное на X отношение «выше ростом, чем» обладает свойством полноты. 4

Пусть на множестве X = R2 + задано отношение R по правилу (x1 , x2 ) R (y1 , y2 ) x1 + y2 > y1 + x2 . Перед тем как отвечать на вопрос о том, каким свойствам удовлетворяет данное бинарное отношение, заметим, что x1 + y2 > y1 + x2 x1 − x2 > y1 − y2 , т. е. (x1 , x2 ) R (y1 , y2 ) x1 − x2 > y1 − y2 . Как несложно догадаться, данное бинарное отношение удовлетворяет тем же свойствам, что и отношение > на действительной прямой, т. е. полнота, транзитивность, рефлексивность. (Проверьте самостоятельно выполнение/невыполнение усло-

Замечание: При проверке указанных выше свойств предпочтений следует быть осторожным и не делать поспешных выводов. В частности, если окажется, что отношение не является рефлексивным, то из этого, вообще говоря, не следует, что отношение является иррефлексивным. Та же ситуация возникает при рассмотрении связки свойств симметричность/асимметричность.

Эти определения также легко проиллюстрировать графически в духе Рис. 2.1 . Так, например, рефлексивность означает, что вся диагональ декартова квадрата X ×X принадлежит R. Свойство симметричности означает, что множество R симметрично относительно диагонали декартова квадрата. Полнота означает, что если мы «согнем по диагонали» декартов квадрат, то в итоге получим треугольник без выколотых точек.

Выше мы ввели и обсудили ряд часто встречающихся свойств бинарных отношений. Теперь рассмотрим взаимосвязь между этими свойствами.

Теорема 1:

Каждое асимметричное бинарное отношение является иррефлексивным.

Каждое полное бинарное отношение является рефлексивным.

2.2. Бинарные отношения и их свойства

Каждое иррефлексивное и транзитивное бинарное отношение является асимметричным.

Отношение R является отрицательно транзитивным тогда и только тогда, когда

x, y, z X из x R y следует x R z или z R y.

Доказательство: Доказательство свойств тривиально. С целью демонстрации техники доказательства мы докажем только третий пункт теоремы.

Предположим противное, т. е. пусть отношение R иррефлексивно, транзитивно, но не является асимметричным. Тогда найдется пара x, y X такая, что x R y и y R x. Так как отношение R транзитивно, то из x R y и y R x следует x R x. Получили противоречие с иррефлексивностью.

Пример 3 (продолжение Примера 1 ):

Нам осталось проверить свойство отрицательной транзитивности. Для его проверки воспользуемся представлением этого свойства из только что доказанного утверждения. Для этого из множества X возьмем трех произвольных студентов a, b, c, чей рост составляет h(a), h(b) и h(c) соответственно, причем выполнено h(a) > h(b). Очевидно, что каким бы ни был h(c), должно быть выполнено хотя бы одно из неравенств h(a) > h(c) или h(c) > h(b). Таким образом, видим, что для данного отношения R выполнено свойство отрицательной транзитив-

Теперь, вооружившись понятием бинарного отношения, мы можем перейти к обсуждению неоклассического подхода к моделированию предпочтений и выбора.

2.2.1 Задачи

/ 1. Предположим, условно, что существует всего два города, в каждом из которых продаются по три товара. Какова размерность пространства благ, исходя из определения блага по Дебре?

/ 2. Пусть X - множество всех ныне живущих людей на планете Земля. Проверьте выполнение следующих свойств:

полнота,

рефлексивность,

симметричность,

транзитивность,

отрицательная транзитивность

для следующих бинарных отношений, заданных на X:

(a) «является потомком»;

(b) «является внуком»;

(c) «является родителем такого же числа детей, что и»;

(d) «состоит в браке с» (допуская полигамию);

(e) «состоит в браке с» (предполагая моногамные отношения);

(f) «состоит в родстве с»;

(g) «хотя бы раз в жизни думал о».

/ 3. Пусть X - множество населенных пунктов на планете Земля. Какими свойствами обладают следующие отношения:

(a) «расположен восточнее» (в случае, если Земля круглая);

(b) «расположен восточнее» (в случае если, Земля плоская и стоит на черепахах);

(c) «имеет ту же численность, что и. . . »;

(d) «имеет то же число безработных, что и. . . »?

Определение . Бинарным отношением R называется подмножество пар (a,b)∈R декартова произведения A×B, т. е. R⊆A×B . При этом множество A называют областью определения отношения R, множество B – областью значений.

Обозначение: aRb (т. е. a и b находятся в отношении R). /

Замечание : если A = B , то говорят, что R есть отношение на множестве A .

Способы задания бинарных отношений

1. Списком (перечислением пар), для которых это отношение выполняется.

2. Матрицей. Бинарному отношению R ∈ A × A , где A = (a 1 , a 2 ,..., a n), соответствует квадратная матрица порядка n , в которой элемент c ij , стоящий на пересечении i-й строки и j-го столбца, равен 1, если между a i и a j имеет место отношение R , или 0, если оно отсутствует:

Свойства отношений

Пусть R – отношение на множестве A, R ∈ A×A . Тогда отношение R:

    рефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефлексивного отношения содержит только единицы);

    антирефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефле сивного отношения содержит только нули);

    симметрично, если Ɐ a , b ∈ A: a R b ⇒ b R a (матрица такого отношения симметрична относительно главной диагонали, т.е. c ij c ji);

    антисимметрично, если Ɐ a, b ∈ A: a R b & b R a ⇒ a = b (в матрице такого отношения отсутствуют единицы, симметричные относительно главной диагонали);

    транзитивно, если Ɐ a, b, c ∈ A: a R b & b R c ⇒ a R c (в матрице такого отношения должно выполняться условие: если в i-й строке стоит единица, например в j-ой координате (столбце) строки, т. е. c ij = 1 , то всем единицам в j-ой строке (пусть этим единицам соответствуют k е координаты такие, что, c jk = 1) должны соответствовать единицы в i-й строке в тех же k-х координатах, т. е. c ik = 1 (и, может быть, ещё и в других координатах).

Задача 3.1. Определите свойства отношения R – «быть делителем», заданного на множестве натуральных чисел.

Решение.

отношение R = {(a,b):a делитель b}:

    рефлексивно, не антирефлексивно, так как любое число делит само себя без остатка: a/a = 1 для всех a∈N ;

    не симметрично, антисимметрично, например, 2 делитель 4, но 4 не является делителем 2;

    транзитивно,таккакесли b/a ∈ N и c/b ∈ N, то c/a = b/a ⋅ c/b ∈ N, например, если 6/3 = 2∈N и 18/6 = 3∈N, то 18/3 = 18/6⋅6/3 = 6∈N.

Задача 3.2. Определите свойства отношения R – «быть братом», заданного на множестве людей.
Решение.

Отношение R = {(a,b):a - брат b}:

    не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех a;

    не симметрично, так как в общем случае между братом a и сестрой b имеет место aRb , но не bRa ;

    не антисимметрично, так как если a и b –братья, то aRb и bRa, но a≠b;

    транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Задача 3.3. Определите свойства отношения R – «быть начальником», заданного на множестве элементов структуры

Решение.

Отношение R = {(a,b) : a - начальник b}:

  • не рефлексивно, антирефлексивно, если в конкретной интерпретации не имеет смысла;
  • не симметрично, антисимметрично, так как для всех a≠b не выполняется одновременно aRb и bRa;
  • транзитивно, так как если a начальник b и b начальник c , то a начальник c .

Определите свойства отношения R i , заданного на множестве M i матрицей, если:

  1. R 1 «иметь один и тот же остаток от деления на 5»; M 1 множество натуральных чисел.
  2. R 2 «быть равным»; M 2 множество натуральных чисел.
  3. R 3 «жить в одном городе»; M 3 множество людей.
  4. R 4 «быть знакомым»; M 4 множество людей.
  5. R 5 {(a,b):(a-b) - чётное; M 5 множество чисел {1,2,3,4,5,6,7,8,9}.
  6. R 6 {(a,b):(a+b) - чётное; M 6 множество чисел {1,2,3,4,5,6,7,8,9}.
  7. R 7 {(a,b):(a+1) - делитель (a+b)} ; M 7 - множество {1,2,3,4,5,6,7,8,9}.
  8. R 8 {(a,b):a - делитель (a+b),a≠1}; M 8 - множество натуральных чисел.
  9. R 9 «быть сестрой»; M 9 - множество людей.
  10. R 10 «быть дочерью»; M 10 - множество людей.

Операции над бинарными отношениями

Пусть R 1 , R 1 есть отношения, заданные на множестве A .

    объединение R 1 ∪ R 2: R 1 ∪ R 2 = {(a,b) : (a,b) ∈ R 1 или (a,b) ∈ R 2 } ;

    пересечение R 1 ∩ R 2: R 1 ∩ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∈ R 2 } ;

    разность R 1 \ R 2: R 1 \ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∉ R 2 } ;

    универсальное отношение U: = {(a;b)/a ∈ A & b ∈ A}. ;

    дополнение R 1 U \ R 1 , где U = A × A;

    тождественное отношение I: = {(a;a) / a ∈ A};

    обратное отношение R -11 : R -11 = {(a,b) : (b,a) ∈ R 1 };

    композиция R 1 º R 2: R 1 º R 2: = {(a,b) / a ∈ A&b ∈ B& ∃ c ∈ C: aR 1 c & c R 2 b}, где R 1 ⊂ A × C и R 2 ⊂ C × B;

Определение. Степенью отношения R на множестве A называется его композиция с самим собой.

Обозначение:

Определение . Если R ⊂ A × B , то R º R -1 называется ядром отношения R .

Теорема 3.1. Пусть R ⊂ A × A – отношение, заданное на множестве A .

  1. R рефлексивно тогда и только тогда, (далее используется знак ⇔) когда I ⊂ R.
  2. R симметрично ⇔ R = R -1 .
  3. R транзитивно ⇔ R º R ⊂ R
  4. R антисимметрично ⇔ R ⌒ R -1 ⊂ I .
  5. R антирефлексивно ⇔ R ⌒ I = ∅ .

Задача 3.4 . Пусть R - отношение между множествами {1,2,3} и {1,2,3,4}, заданное перечислением пар: R = {(1,1), (2,3), (2,4), (3,1), (3,4)}. Кроме того, S - отношение между множествами S = {(1,1), (1,2), (2,1), (3,1), (4,2)}. Вычислите R -1 , S -1 и S º R. Проверьте, что (S º R) -1 = R -1 , S -1 .

Решение.
R -1 = {(1,1), (1,3), (3,2), (4,2), (4,3)};
S -1 = {(1,1), (1,2), (1,3), (2,1), (2,4)};
S º R = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)};
(S º R) -1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)};
R -1 º S -1 = {(1,1), (1,2), (1,3), (2 ,1), (2,2), (2,3)} = (S º R) -1 .

Задача 3.5 . Пусть R отношение «...родитель...», а S отношение «...брат...» на множестве всех людей. Дайте краткое словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 и R º R.

Решение.

R -1 - отношение«...ребёнок...»;

S -1 - отношение«...брат или сестра...»;

R º S - отношение «...родитель...»;

S -1 º R -1 - отношение «...ребёнок...»

R º R - отношение «...бабушка или дедушка...»

Задачи для самостоятельного решения

1) Пусть R - отношение «...отец...», а S - отношение «...сестра...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , R º R.

2) Пусть R - отношение «...брат...», а S - отношение «...мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , S º S.

3) Пусть R - отношение «...дед...», а S - отношение «...сын...» на множестве всех людей. Дайте словесное описание отношениям:

4) Пусть R - отношение «...дочь...», а S - отношение «...бабушка...» на множе- стве всех людей. Дайте словесное описание отношениям:

5) Пусть R - отношение «...племянница...», а S - отношение «...отец...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

6) Пусть R - отношение «сестра...», а S - отношение «мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

7) Пусть R - отношение «...мать...», а S - отношение «...сестра...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S1, R º S, S1 º R1, S º S.

8) Пусть R - отношение «...сын...», а S - отношение «...дед...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

9) Пусть R - отношение «...сестра...», а S - отношение «...отец...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

10) Пусть R - отношение «...мать...», а S - отношение «...брат...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

Определения

  • 1. Бинарным отношением между элементами множеств А и В называется любое подмножество декартова произведения RAB, RAА.
  • 2. Если А=В, то R - это бинарное отношение на A.
  • 3. Обозначение: (x, y)R xRy.
  • 4. Область определения бинарного отношения R - это множество R = {x: существует y такое, что (x, y)R}.
  • 5. Область значений бинарного отношения R - это множество R = {y: существует x такое, что (x, y)R}.
  • 6. Дополнение бинарного отношения R между элементами А и В - это множество R = (AB) R.
  • 7. Обратное отношение для бинарного отношения R - это множество R1 = {(y, x) : (x, y)R}.
  • 8. Произведение отношений R1AB и R2BC - это отношение R1 R2 = {(x, y) : существует zB такое, что (x, z)R1 и (z, y)R2}.
  • 9. Отношение f называется функцией из А в В, если выполняется два условия:
    • а) f = А, f В
    • б) для всех x, y1, y2 из того, что (x, y1)f и (x, y2)f следует y1=y2.
  • 10. Отношение f называется функцией из А на В, если в первом пункте будет выполняться f = А, f = В.
  • 11. Обозначение: (x, y)f y = f(x).
  • 12. Тождественная функция iA: AA определяется так: iA(x) = x.
  • 13. Функция f называется 1-1-функцией, если для любых x1, x2, y из того, что y = f(x1) и y = f(x2) следует x1=x2.
  • 14. Функция f: AB осуществляет взаимно однозначное соответствие между А и В, если f = А, f = В и f является 1-1-функцией.
  • 15. Свойства бинарного отношения R на множестве А:
    • - рефлексивность: (x, x)R для всех xA.
    • - иррефлексивность: (x, x)R для всех xA.
    • - симметричность: (x, y)R (y, x)R.
    • - антисимметричность: (x, y)R и (y, x)R x=y.
    • - транзитивность: (x, y)R и (y, z)R (x, z)R.
    • - дихотомия: либо (x, y)R, либо (y, x)R для всех xA и yA.
  • 16. Множества А1, A2, ..., Аr из Р(А) образуют разбиение множества А, если
  • - Аi , i = 1, ..., r,
  • - A = A1A2...Ar,
  • - AiAj = , i j.

Подмножества Аi , i = 1, ..., r, называются блоками разбиения.

  • 17. Эквивалентность на множестве А - это рефлексивное, транзитивное и симметричное отношение на А.
  • 18. Класс эквивалентности элемента x по эквивалентности R - это множество [x]R={y: (x, y)R}.
  • 19. Фактор множество A по R - это множество классов эквивалентности элементов множества А. Обозначение: A/R.
  • 20. Классы эквивалентности (элементы фактор множества А/R) образуют разбиение множества А. Обратно. Любому разбиению множества А соответствует отношение эквивалентности R, классы эквивалентности которого совпадают с блоками указанного разбиения. По-другому. Каждый элемент множества А попадает в некоторый класс эквивалентности из A/R. Классы эквивалентности либо не пересекаются, либо совпадают.
  • 21. Предпорядок на множестве A - это рефлексивное и транзитивное отношение на А.
  • 22. Частичный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А.
  • 23. Линейный порядок на множестве A - это рефлексивное, транзитивное и антисимметричное отношение на А, удовлетворяющее свойству дихотомии.

Пусть A={1, 2, 3}, B={a, b}. Выпишем декартово произведение: AB = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }. Возьмём любое подмножество этого декартова произведения: R = { (1, a), (1, b), (2, b) }. Тогда R - это бинарное отношение на множествах A и B.

Будет ли это отношение являться функцией? Проверим выполнение двух условий 9a) и 9б). Область определения отношения R - это множество R = {1, 2} {1, 2, 3}, то есть первое условие не выполняется, поэтому в R нужно добавить одну из пар: (3, a) или (3, b). Если добавить обе пары, то не будет выполняться второе условие, так как ab. По этой же причине из R нужно выбросить одну из пар: (1, a) или (1, b). Таким образом, отношение R = { (1, a), (2, b), (3, b) } является функцией. Заметим, что R не является 1-1 функцией.

На заданных множествах A и В функциями также будут являться следующие отношения: { (1, a), (2, a), (3, a) }, { (1, a), (2, a), (3, b) }, { (1, b), (2, b), (3, b) } и т.д.

Пусть A={1, 2, 3}. Примером отношения на множестве A является R = { (1, 1), (2, 1), (2, 3) }. Примером функции на множестве A является f = { (1, 1), (2, 1), (3, 3) }.

Примеры решения задач

1. Найти R, R, R1, RR, RR1, R1R для R = {(x, y) | x, y D и x+y0}.

Если (x, y)R, то x и y пробегают все действительные числа. Поэтому R = R = D.

Если (x, y)R, то x+y0, значит y+x0 и (y, x)R. Поэтому R1=R.

Для любых xD, yD возьмём z=-|max(x, y)|-1, тогда x+z0 и z+y0, т.е. (x, z)R и (z, y)R. Поэтому RR = RR1 = R1R = D2.

2. Для каких бинарных отношений R справедливо R1= R?

Пусть RAB. Возможны два случая:

  • (1) AB. Возьмём xAB. Тогда (x, x)R (x, x)R1 (x, x)R (x, x)(AB) R (x, x)R. Противоречие.
  • (2) AB=. Так как R1BA, а RAB, то R1= R= . Из R1 = следует, что R = . Из R = следует, что R=AB. Противоречие.

Поэтому если A и B, то таких отношений R не существует.

3. На множестве D действительных чисел определим отношение R следующим образом: (x, y)R (x-y) - рациональное число. Доказать, что R есть эквивалентность.

Рефлексивность:

Для любого xD x-x=0 - рациональное число. Потому (x, x)R.

Симметричность:

Если (x, y)R, то x-y = . Тогда y-x=-(x-y)=- - рациональное число. Поэтому (y, x)R.

Транзитивность:

Если (x, y)R, (y, z)R, то x-y = и y-z =. Складывая эти два уравнения, получаем, что x-z = + - рациональное число. Поэтому (x, z)R.

Следовательно, R - это эквивалентность.

4. Разбиение плоскости D2 состоит из блоков, изображённых на рисунке а). Выписать отношение эквивалентности R, соответствующее этому разбиению, и классы эквивалентности.

Аналогичная задача для b) и c).


а) две точки эквивалентны, если лежат на прямой вида y=2x+b, где b - любое действительное число.

b) две точки (x1,y1) и (x2,y2) эквивалентны, если (целая часть x1 равна целой части x2) и (целая часть y1 равна целой части y2).

с) решить самостоятельно.

Задачи для самостоятельного решения

  • 1. Доказать, что если f есть функция из A в B и g есть функция из B в C, то fg есть функция из A в C.
  • 2. Пусть A и B - конечные множества, состоящие из m и n элементов соответственно.

Сколько существует бинарных отношений между элементами множеств A и B?

Сколько имеется функций из A в B?

Сколько имеется 1-1 функций из A в B?

При каких m и n существует взаимно-однозначное соответствие между A и B?

3. Доказать, что f удовлетворяет условию f(AB)=f(A)f(B) для любых A и B тогда и только тогда, когда f есть 1-1 функция.